
Spectre(v1/v2/v4) V.S. Meltdown(v3)

Gavin Guo
Engineering Technical Lead

Spectre and Meltdown

Spectre

● Variant 1: bounds check bypass (CVE-2017-5753)
● PoC of V1
● Mitigation of V1(Dan William/OSB)

● Variant 2: branch target injection (CVE-2017-5715)
● PoC of V2
● Mitigation of V2(retpoline/IBRS/IBPB)

● Variant 4: speculative store bypass (CVE 2018-3639)

Meltdown

● Variant 3: rogue data cache load (CVE-2017-5754)

Spectre V1: Bounds Check Bypass
(CVE-2017-5753)

PoC of Variant 1/3
struct array {
 unsigned long length;
 unsigned char data[];
};

struct array *arr1 = ...; /* small array, arr1->length = 10 */
struct array *arr2 = ...; /* array of size 0x400 */

/* >0x400 (OUT OF BOUNDS!) */
unsigned long untrusted_offset_from_caller = 0, i = 0;
clflush(arr2->data);
While (i < 30) { // branch prediction buffer size
 if (untrusted_offset_from_caller < arr1->length) { // Where Speculation happens if (i == 29)
 unsigned char value = arr1->data[untrusted_offset_from_caller];

 unsigned long index2 = ((value & 1) * 0x100) + 0x200;
 if (index2 < arr2->length) {
 unsigned char value2 = arr2->data[index2];
 }
 }
 If (i == 28) { untrusted_offset_from_caller = ((void *)addrof(proc_banner) - (void *)addr->data); }
 i++;
}
probe_read_time(arr2->data[0x200], arr2->data[0x300]); // rdtsc assembly

%eax = Rdtsc
arr2->data[0x300]
ld %ecx, arr2, 0x300
%ebx = Rdtsc

Ref: [5]

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Mitigations of Spectre V1
Variant 1: bounds check bypass (CVE-2017-5753)
[PATCH v4.1 00/10] spectre variant1 mitigations for tip/x86/pti

For example, in the presence of branch prediction,
it is possible for bounds checks to be ignored by code
 which is speculatively executed. Consider the
following code:

int load_array(int *array, unsigned int idx)
{

if (idx >= MAX_ARRAY_ELEMS)
return 0;

else
return array[idx];

}

Which, on arm64, may be compiled to an
assembly sequence such as:

CMP <idx>, #MAX_ARRAY_ELEMS
B.LT less
MOV <returnval>, #0
RET

 less:
LDR <returnval>, [<array>, <idx>]
RET

==>

Branch predict
taken

https://www.spinics.net/lists/linux-arch/msg44011.html

Mitigations of Spectre V1
● Variant 1: bounds check bypass (CVE-2017-5753)

● Mitigated: [PATCH v4.1 00/10] spectre variant1 mitigations for tip/x86/pti
+/**
+ * array_ptr - Generate a pointer to an array element, ensuring
+ * the pointer is bounded under speculation to NULL.
+ *
+ * @base: the base of the array
+ * @idx: the index of the element, must be less than LONG_MAX
+ * @sz: the number of elements in the array, must be less than LONG_MAX
+ *
+ * If @idx falls in the interval [0, @sz), returns the pointer to
+ * @arr[@idx], otherwise returns NULL.
+ */
+#define array_ptr(base, idx, sz) \
+({ \
+ union { typeof(*(base)) *_ptr; unsigned long _bit; } __u; \
+ typeof(*(base)) *_arr = (base); \
+ unsigned long _i = (idx); \
+ unsigned long _mask = array_ptr_mask(_i, (sz)); \
+ \
+ __u._ptr = _arr + _i; \
+ __u._bit &= _mask; \
+ __u._ptr; \
+})
+#endif /* __NOSPEC_H__ */

+/*
+ * If idx is negative or if idx > size then bit 63 is set in the mask,
+ * and the value of ~(-1L) is zero. When the mask is zero, bounds check
+ * failed, array_ptr will return NULL.
+ */
+#ifndef array_ptr_mask
+static inline unsigned long array_ptr_mask(unsigned long idx, unsigned
long sz)
+{
+ return ~(long)(idx | (sz - 1 - idx)) >> (BITS_PER_LONG - 1);
+}
+#endif
+

idx = 33, sz = 32
32 - 1 - 33 = -1 = 0xFFFFFFFF
idx | 0xFFFFFFFF = 0xFFFFFFFF
~0xFFFFFFFF = 0x0
0x0 >> 31 = 0x0

idx = 1, sz = 32
32 - 1 - 1 = 30 = 0x1E
idx | 0x1E = 0x1F
~0x1F = 0xFFFFFFE0
0xFFFFFFE0 >> 31 =
0xFFFFFFFF

https://www.spinics.net/lists/linux-arch/msg44011.html

Spectre V1 mitigation: Ubuntu adopts the
patches

cb11ef4db1d0 UBUNTU: SAUCE: arm: no osb() implementation yet
1e738b18f256 UBUNTU: SAUCE: arm64: no osb() implementation yet
2fc7fab69765 UBUNTU: SAUCE: s390/spinlock: add osb memory barrier
c5a6edd430fc UBUNTU: SAUCE: powerpc: add osb barrier
71585422c5ed UBUNTU: SAUCE: claim mitigation via observable speculation barrier
3627e88783ac userns: prevent speculative execution
9780ac7b9211 udf: prevent speculative execution
798c6525821d net: mpls: prevent speculative execution
8661e7a75b2a fs: prevent speculative execution
5603071f433b ipv6: prevent speculative execution
98f3f8c322fe ipv4: prevent speculative execution
ce20b02844d1 Thermal/int340x: prevent speculative execution
7895a746d217 qla2xxx: prevent speculative execution
8e8527e8a64a carl9170: prevent speculative execution
06c867e7e4a5 UBUNTU: SAUCE: FIX: x86, bpf, jit: prevent speculative execution when JIT is
enabled
3cc56bbbc676 x86, bpf, jit: prevent speculative execution when JIT is enabled
81774d484f26 bpf: prevent speculative execution in eBPF interpreter
1fed0ab0bd69 locking/barriers: introduce new observable speculation barrier

The patch set was made by
elena.reshetova@intel.com

https://lists.ubuntu.com/archives/kernel-team/2018-February/089971.html
https://lists.ubuntu.com/archives/kernel-team/2018-February/089971.html
mailto:elena.reshetova@intel.com

OVMSA-2018-0015 - Unbreakable Enterprise
kernel security update(Oracle)

https://linux.oracle.com/errata/OVMSA-2018-0015.html
https://linux.oracle.com/errata/OVMSA-2018-0015.html

Spectre V1 mitigation

The mitigation of Spectre v1 is backporting from the upstream to Ubuntu Kernel
on 2018/6/1:

[SRU][Xenial][PATCH 0/5] Prevent speculation on user controlled

pointer

https://lists.ubuntu.com/archives/kernel-team/2018-June/093096.html

https://lists.ubuntu.com/archives/kernel-team/2018-June/093096.html

Spectre V2 - Variant 2: Branch Target
Injection (CVE-2017-5715)

Agenda

● Introduction
● What's the Side-Channel Attack?
● Three kinds of branch prediction mechanisms.

● Generic Branch Predictor
● Indirect Branch Predictor
● Return Stack Predictor

● Spectre V2 - PoC Summary
● The exploit relies on the knowledge of the symbol locations of certain

functions
● The jump table technique to inject branch target.
● How to get the base address of kvm_intel.ko/kvm.ko/vmlinux loading

address/physical address of user-mapped page/page_offset?

Introduction

● The slide is based on Jann Horn's work[5][9]. Kudos to Jann Horn!
● The PoC can be downloaded from chromium bugs checking website[9].
● The magic number(jump table or gadget offset) in the slide can be found in

the kernel[10]. Using objdump against the kvm-intel.ko/kvm.ko/vmlinux can
find the magic number(The vmlinux needs to be extracted first by
"scripts/extract-vmlinux boot/vmlinuz-4.9.0-3-amd64 > vmlinux-4.9.0-3").

● As the detail process is too _COMPLICATED_, I had an detail presentation in
Chinese at Taiwan Linux Kernel Hackers Club on 2018/06/12:
● 主題分享：深入 Spectre v2 - VM 如何攻擊 Host(Understanding Spectre v2 - How

VM can attack the Host?)
● https://www.youtube.com/watch?v=zYRI60uAwYc.
● https://v.youku.com/v_show/id_XMzY2MTQzMzg5Mg

● The Spectre v2 is presented in Beijing Linux Conference 2018.

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1272#c5
https://bugs.chromium.org/p/project-zero/issues/detail?id=1272#c5
http://snapshot.debian.org/archive/debian/20170701T224614Z/pool/main/l/linux/linux-image-4.9.0-3-amd64_4.9.30-2%2Bdeb9u2_amd64.deb
https://www.facebook.com/groups/twlinuxkernelhackers/
https://www.youtube.com/watch?v=zYRI60uAwYc
https://v.youku.com/v_show/id_XMzY2MTQzMzg5Mg
http://sched.co/ER9k

What's Side-Channel Attack?
(Speculation + Flush + Reload)
if (offset < DATA_LENGTH) { // Where Speculation
happens
 unsigned char value = data[offset];
 unsigned long index2 = (value & 1) * 0x100;
 unsigned char value2 = signal[index2];
}

Attacker flush the shared cache line.1

signal[0]

signal[0]

Victim loads the
shared cache line by
Speculation.

2Attacker reloads the
cache and measure
the time. It's faster if
already loaded.

3

Attacker
Address Space

Victim
Address Space

Ref: [5][7][8]

PoC

Cache

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
http://palms.ee.princeton.edu/system/files/SP_vfinal.pdf
https://pdfs.semanticscholar.org/81f6/c43188a2308b36a0c47570f7e7ec19cc20e1.pdf

Three kinds of prediction mechanisms
● Generic Branch Predictor

○ The Branch Target Buffer which is part of the CPU to predict
the target address of the branch instruction before the
execution unit calculate the result.

● Indirect Branch Predictor
○ Includes Branch History Buffer and Indirect Branch Target

Buffer. Use the previous branch history as the footprint to index
the BHB/IBTB.

● Return Predictor (A.K.A Return Stack Buffer)
○ We haven't analyzed that in detail yet.

Ref: [5]

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

 What's Return Stack Buffer(RSB)?

Call Func

+
Indirect
Branch
Predictor

Instruction
length. i.e. 4

Return
Stack
Buffer

Return

Indirect
Branch
Predictor

Return
Stack
Buffer

Mux
Select

The Return Stack
Buffer (RSB) is a
microarchitectural
structure that holds
predictions for
execution of near RET
instructions. Each
execution of a near
CALL instruction adds
an entry to the RSB
that contains the
address of the
instruction
sequentially following
that CALL instruction.
The RSB is not used or
updated by far CALL,
far RET, or IRET
instructions.

Ref: [3:p.28]

http://slideplayer.com/slide/9418707/

What's Generic Branch Predictor?

The Generic Branch
Predictor is the Branch
Target Buffer which is
part of the CPU to
predict the target
address of the branch
instruction before the
execution unit calculate
the result.

DestinationSource

0004512300041000

Branch Target Buffer

0x414100041000

0x414100045123

0x414200041000

0x414200045123

Address Space

JMP

JMP

Ref: [2][3][19:p.19]

http://slideplayer.com/slide/4670017/
http://slideplayer.com/slide/9418707/
http://slideplayer.com/slide/3397228/

What's Indirect Branch Predictor?

The branch history buffer (BHB) stores information about the last 29 taken
branches - basically a fingerprint of recent control flow - and is used to allow
better prediction of indirect calls that can have multiple targets. Only the lower
20 bits of the source and target addresses have an influence on the branch
history buffer.

Ref: [5]

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

What's Indirect Branch Predictor?

IP address Branch History
Register(BHB)

Indirect Branch Predictor

...

Tag Target

...

Indirect Branch Target
Buffer

Tag 2bc

...

Indirect Branch Predictor
Buffer

Hash
Function

Taken or
Not-Taken

Calculated
branch target
address

Register
File

src1
data

src2
data

src1

src2

icache

A
LU

Predicted
Target
Address

callq *0xb0(%r8)

%r8

0xb0

immediate

%r8

Fetch Decode Execute

Ref: [4:p.35][15:p.22,p.34][18:p.20][20:p.15][21:p.18][22:p.22][23:p.19][24:p.41][25:p.18]

https://www.slideshare.net/HsienHsinLee/lec12-computer-architecture-by-hsienhsin-sean-lee-georgia-tech-p6-netburst-pentiium-4
http://slideplayer.com/slide/7566661/
http://slideplayer.com/slide/7433782/
http://slideplayer.com/slide/5121632/
http://slideplayer.com/slide/12581426/
https://www.slideshare.net/HsienHsinLee/lec5-computer-architecture-by-hsienhsin-sean-lee-georgia-tech-branch-predictor
https://www.slideserve.com/cooper/microbenchmarks-and-mechanisms-for-reverse-engineering-of-branch-predictor-structures
https://www.slideshare.net/rinnocente/computer-architecture-branch-prediction
http://slideplayer.com/slide/5110182/

What’s the Indirect Branch History Buffer
XOR Math?

void bhb_update(uint58_t *bhb_state, unsigned
long src, unsigned long dst) {
 *bhb_state <<= 2;
 *bhb_state ^= (dst & 0x3f);
 *bhb_state ^= (src & 0xc0) >> 6;
 *bhb_state ^= (src & 0xc00) >> (10 - 2);
 *bhb_state ^= (src & 0xc000) >> (14 - 4);
 *bhb_state ^= (src & 0x30) << (6 - 4);
 *bhb_state ^= (src & 0x300) << (8 - 8);
 *bhb_state ^= (src & 0x3000) >> (12 - 10);
 *bhb_state ^= (src & 0x30000) >> (16 - 12);
 *bhb_state ^= (src & 0xc0000) >> (18 - 14);
}

Some of the bits of the BHB
state seem to be folded together
further using XOR when used for
a BTB access, but the precise
folding function hasn't been
understood yet.

The only fact is that the BHB is
shifted two bits at a time. We
can guess the BHB by the trick.

BHB << 2XOR

58 bits
Source

Destination

addr[0,19]

addr[0
,5]

Ref: [5][15:p.22,p.34]

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
http://slideplayer.com/slide/7566661/

Indirect Branch History
Buffer Xor Math

IP Address

New BHB

... 0

Branch Target
Address

0xffffffff81070f50 & 0x3F = 0x10

0xffffffff811bf21c: movabs $0xffffffff81070f50, %rax
0xffffffff811bf220: callq *%rax

0 1 0 0 0 0

IP Address & 0xffff0 =
0xffffffff811bf220 & 0xffff0 =
0xBF220

1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0

0 00 01 11 01 01 11 11 0

B F 2 2 0

 1 0

... 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0

BHB << 2

xor

xor

xor

58 bitsRef: [5]

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

...

Tag Target

...

Branch Target Buffer

Tag 2bc

...

Generic Branch Predictor
Buffer

...

Tag Target

...

Indirect Branch Target
Buffer

Tag 2bc

...

Indirect Branch Predictor
Buffer

What's Indirect Branch Predictor?(Fetch Stage)

M
ux

IP address branch history registerXOR

Hash
Function

Bi-modal selector
between Local and
Global predictor

Global prediction
target address

Generic
Prediction
Target
Address

Final
prediction
target
address

M
ux

T or NT

Next
Instruction

T

NT

Taken or
Not-Taken

Taken or
Not-Taken

Spectre V2 - PoC Summary

● Take advantage of the Branch Target Injection and Side-Channel attack to
get the base address of kvm-intel.ko, vmlinux loading address, and
physical address of user-mapped pages, page_offset.

● Once we get the base address, we can train the VMExit path for the CPU
Speculation to make the Indirect/Generic Branch Predictor jump to the
designated eBPF program and peep the privilege data.

● Once the privilege data is fetched by the Speculation, use the Side-Channel
attack to access the mmap user space page to cache specific data for the
malicious attacker program to measure the time difference and identify
the specific bit of the privilege data.

Host kernel
VMX-root mode

Guest kernel
VMX non-root mode

Guest userspace
VMX non-root mode

Prepare the hookpoint
data(eBPF) for attacking
specific address(e.g.
core_pattern) then call
vmcall(hypervisor call) which
causes VM exit.

for(;;)
{

vmlaunch;
vmx_complete_atomic_exit_constprop_88(vmx);
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);

}

Measure the time difference
loading leak address in
share_page by the
side-channel trick and
determine the leak bit.

ffffffff81514edd: mov %r9,%rsi
ffffffff81514ee0: callq *0xb0(%r8)
r8+0xb0=__bpf_prog_run, r9=bpf_insn *

__bpf_prog_run use the prebuilt bpf
instructions to implement side-channel
attack to leak the specific system address
information to the share_page.
ex: ffffffff81c845e0 D core_pattern

ffffffffbcc845e0 63 6f 72 65 00 00 | core|

61

2

3
4

5

Speculation

 Spec

tre
 V2

 P
oC

VA PA

ret

Simulation of
VMExit

0xffffffff81514edd

 user(r/w/x)

In the user space of VM,
train the IBP to simulate
the VMExit and make it run
to the hook gadget to
access the guessed virtual
address.

VMExit

Gadget

The number is the offset to the
kvm_intel_load_address.

addr_iret

ss

sp

eflags

cs

ip

addr_iret

ss

sp

eflags

cs

ip

Ret_area
0xc3(ret)

Iret_area
0xcf48(iret) 0xcf48 0xcf48 0xcf48

0xcf48 0xcf48 0xcf48

0xcf48 0xcf48 0xcf48

0xcf48 0xcf48 0xcf48

0xc30xc30xc30xc3

0xc30xc30xc30xc3

0xc30xc30xc30xc3

0xc30xc30xc30xc3

0xc30xc30xc30xc3

0xc30xc30xc30xc3

Refill the IBHB/BTB by
constructing the iret stack
with the ret instruction.

kvm_arch_vcpu_ioctl_run -> 0xffffffff81514edd

kvm_arch_vcpu_ioctl_run <- __vmx_complete_interrupts(ret)

vmx_complete_interrupts -> __vmx_complete_interrupts(call)

vmx_vcpu_run -> vmx_complete_interrupts(call)

vmx_vcpu_run <- vmx_recover_nmi_blocking(ret)

vmx_vcpu_run -> vmx_recover_nmi_blocking(call)

vmx_vcpu_run <- vmx_complete_atomic_exit_constprop_88(ret)

vmx_vcpu_run ->
vmx_complete_atomic_exit_constprop_88(call)

Stack of Branch Target Injection

0xfcbd

0x4720

0x4734

0xfcbe

vmx_vcpu_run

vmx_complete_atomic_exit_constpr
op_88

vmx_complete_ato
mic_exit_constprop
_88

vmx_vcpu_run

vmx_vcpu_run()
{

}

vmx_complete_atomic_exit_c
onstprop_88()
{

}
0xfcbd

0xfcbe

0x4720

0x4734 ret

 Jump Table

 Construction

Attack KASLR and get the base address
● The exploit relies on the knowledge of the symbol locations of

certain functions.

● With the base address of kvm-intel.ko, kvm.ko, and vmlinux, the
Spectre v2 PoC can leverage the BTB and make the exploit more
reliable.

● With the vmlinux base address, all the kernel's global variables
address get.

● With the virtual address of the guest share page, the Side-Channel
attack can notify the guest about the result.

How to get the base address of kvm_intel.ko?

● Guess and train the Branch History Buffer(58 bits) by two bits at a time
with Jump table setup for specific offset.

● Make the vmcall which will VMExit and go through the VMExit calling path
to fill the Branch Prediction Buffer with BHB footprint.

● The BHB footprint can be figured out by the branch target injection skill.

● After the BHB footprint is figured out, the base address of kvm_intel.ko can
be calculated by comparing BHB footprint with the emulated BHB result by
brute-force trying all the possible base address and apply XOR Math
operation to the sequential jumps.

Host kernel
VMX-root
mode

Guest kernel
VMX non-root mode

Guest userspace
VMX non-root mode

3

BHB << 2XOR

Indirect Branch Predictor

...

Tag Target

...

Indirect Branch Target
Buffer

Tag 2bc

...

Indirect Branch Predictor
Buffer

Hash
Function

0 0 0 ... 0 0 Load data f.

0 1

1 0

1 1

1
Flush the BHB by 29 jumps(ret)
with offset 0 in the user space.

Enumerate two bits in the MSB to
figure out the BHB footprint.

58 bits

0

1

2

3

2
Call vmcall to make VMExit and
get the BHB footprint of
kvm-intel.ko function calls.

for(;;)
{

vmlaunch;
vmx_complete_atomic_exit_constprop_88(vmx);
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);

}

0 0 0 ... 0 0

4
Brute force all the
possible base address of
kvm-intel.ko by the BHB
footprint + Xor Math.

More elaborate on the Step 3
BHB Footprint Theft

00 00 00

11 00 00 00

01 11 00 00 00

01 01 11 00 00 00

... Load data f.

... Load data f.

... Load data f.

... Load data f.

0x00577ccba1f8bad7

BHB Footprint

N=29

N=28

N=27

N=26

00 00 00

11 00 00 00

01 11 00 00 00

01 01 11 00 00 00

...

...

...

...

BHB << 29*2

BHB << 28*2

BHB << 27*2

0xd7=11010111

BHB << 26*2

Attacker Victim

The BHB Footprint can be figured out by 29 runs. The first two
runs' detail attacking process will be illustrated in the next two
slides.

 BHB Footprint

 Theft

 BHB Footprint

 Theft

VMX
root

3-1

0 0 0 ... 0 0 Load data f.

0 1

1 0

1 1

Train the iBPB/iBTB with 29
jumps(ret) and enumerate two
bits in the MSB and the final
jump destination is the load data
func. to fill the cache.

0

1

2

3

0x00577ccba1f8bad7

BHB << 2XOR

Indirect Branch Predictor

...

Tag Load data
func

...

Indirect Branch Target
Buffer

Tag 2bc

...

Indirect Branch Predictor
Buffer

Hash
Function

58 bits

BHB Footprint

BHB << (28*2)

0x0300000000000000

To implement the
attack by the jump
table.

vmcall
3-2

Get the BHB footprint by the
vmcall and pad 28 jumps to fit
the attacker's hash index.

Taken!

3-3
Trigger the jump table of the re-arranged
BHB footprint then Speculation will jump
to the load data function with BHB
starting with 11. Finally, side-channel
attack can observe the time difference and
concludes 11 are the right bits.

Index starting
with 11

1st Run!

 BHB Footprint

 Theft

VMX
root

3-1

0 0 1 1 ... 0 0 Load data f.

0 1

1 0

1 1

Train the iBPB/iBTB with 29
jumps(ret) and enumerate two
bits in the MSB and the final
jump destination is the load data
func. to fill the cache.

0

1

2

3

0x00577ccba1f8bad7

BHB << 2XOR

Indirect Branch Predictor

...

Tag Load data
func

...

Indirect Branch Target
Buffer

Tag 2bc

...

Indirect Branch Predictor
Buffer

Hash
Function

58 bits

BHB Footprint

BHB << (26*2)

0x01c0000000000000

To implement the
attack by the jump
table.

vmcall
3-2

Get the BHB footprint by the
vmcall and pad 26 jumps to fit
the attacker's hash index.

Taken!
Index starting
with 0111

2nd Run!

3-3
Trigger the jump table of the re-arranged
BHB footprint then Speculation will jump
to the load data function with BHB
starting with 0111. Finally, side-channel
attack can observe the time difference and
concludes 01 are the right bits.

More elaborate on the Step 4
Brute Force kvm-intel.ko address

 /* The jump table offset was collected from the objdump for the
 * record of branch sequence after VMExit
 */
 struct jump jumps[] = {
 { .src = kvm_intel_base+0x0029, .dst = 0xffffffff81059620 },
 { .src = 0xffffffff81059630 , .dst = kvm_intel_base+0x002a },
 { .src = kvm_intel_base+0x002c, .dst = kvm_intel_base+0xfaf8 },
 { .src = kvm_intel_base+0xfb05, .dst = kvm_intel_base+0xf9b0 },
 { .src = kvm_intel_base+0xf9f3, .dst = kvm_intel_base+0xfb06 },
 { .src = kvm_intel_base+0xfb2d, .dst = kvm_intel_base+0xfb38 },
 { .src = kvm_intel_base+0xfb46, .dst = kvm_intel_base+0xfb4a },
 { .src = kvm_intel_base+0xfbbb, .dst = kvm_intel_base+0xfbc1 }
 };

Emulated BHB << 2XOR

58 bits

kvm_intel_base [0, 0x100000), kvm_intel_base += 0x1000

0 <= i <= 7

jumps[i].src

jumps[i].dst

Brute Force
kvm-intel.ko address

Manually construct the BHB by
exclusive-or the src, dst, and
the emulated BHB. Then
compare the emulated BHB
with the BHB footprint from
step 3. If it’s equal, we figure
out the right kvm_intel_base
address.

addr[0,19]

addr[0
,5]

How to get the base address of kvm.ko and
vmlinux?

● Find out the gadget point where kvm.ko calls kvm-intel.ko and vmlinux calls
kvm.ko.

● Construct the instruction table in guess source address page and populate
with nop.

● Construct the instruction table in guess destination address page and the
instruction table content is to touch the leak address for side-channel
attack.

● Invoke the vmcall and the instructions which causes VMExit to trigger the
calling path and fill the BTB.

● Call guess source address and it will speculate to the destination according
to the BTB entry populated in the previous step if the guess address is
matched. (Even nop instruction is in the source address).

How to get the base address of kvm.ko?

Host kernel
VMX-root
mode

Guest kernel
VMX non-root mode

Guest userspace
VMX non-root mode

kvm_arch_vcpu_ioctl_run vmx_handle_external_intr

RANGE_START
0x00001000c0000000

Jump table destination

1
Call vmcall to trigger VMExit and then
fill the gadget to BTB entry.

0x90

...

0x90

load leak_arr

...
load leak_arr

load leak_arr

Jump table source

RANGE_END
0x00001000c4000000

0xffffffffc0683390 0xffffffffc072904a

0x1f390
0x4a

0x00001000c0683390

c072904ac0683390

Branch Target Buffer

0x90

0x00001000c072904a
4K

4K

4K

2
Dereferencing(*source) the next
source address(+4k). 3

The code for loading leak_arr in the
destination will be speculated according
to the BTB if the offset is matched(even
the source instruction is nop/0x90.) and
side-channel attack can detect the
cache existence of leak_arr. Otherwise,
go to Step 2.

callq *0x2b0(%rax) Fill the
BTB entry

Speculation

How to get the physical address of mmap
user space virtual address?

● mmap a page and the page will be used in the side-channel attack for
recording the result of the bit identification of victim’s data.

● Try to find the physical address mapping of the page. As the physical
address will be useful to find the PAGE_OFFSET in the next attack.

● After we get the PAGE_OFFSET, we can figure out the virtual
address(PAGE_OFFSET + PA) for the side-channel attack in the kernel to
access the page.

How to get the physical address of mmap
user space virtual address?

Host kernel
VMX-root
mode

Guest kernel
VMX non-root mode

Guest userspace
VMX non-root mode

for(;;)
{

vmlaunch;
vmx_complete_atomic_exit_constprop_88(vmx);
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);

}

*page_offset_base
+64G
0xffff8c1000000000

*page_offset_base
0xffff8c0000000000

.

.

.

3

Put the next guessed mapped
VA in the register and call the
vmcall in the user space to
cause the VMExit.

1
mmap a page for the
side-channel attack.

VA PA

mmap user space
address

?

4 Use the side-channel trick to determine if
mmap user page is cached. If yes, we find the
PA, otherwise, go to step 3.

Load the data
from guessed VA

2
In the user space of VM,
train the IBP to simulate
the VMExit and make it run
to the hook gadget to
access the guessed virtual
address.

Gadget

Speculation

ret

Simulation of
VMExit

+0xa9def
user(r/w/x)

+0xa9def

● What's the _GADGET_ for accessing the kernel VA of specific guess physical
address?

unsigned long r8val = phys_addr - 0xf8UL;
unsigned long rop_relocated_immediate = 0UL - (unsigned long)PER_CPU_OFFSET_ADDRESS;
unsigned long r9val = ((rop_relocated_immediate + PAGE_OFFSET_BASE_ADDRESS) / 8UL);
train_mispredict_and_hypercall(r8val, r9val, PHYS_LOAD_ADDRESS); # ffffffff810a9def
 /*
 * ffffffff810a9def: 4c 89 c0 mov %r8,%rax # r8=phys_addr - 0xf8UL
 * ffffffff810a9df2: 4d 63 f9 movslq %r9d,%r15

(rop_relocated_immediat(0x7e594c40) + PAGE_OFFSET_BASE_ADDRESS) / 8UL
 * ffffffff810a9df5: 4e 8b 04 fd c0 b3 a6 mov -0x7e594c40(,%r15,8),%r8
 # %r8 = %r15 * 8 - 0x7e594c40 = *(PAGE_OFFSET_BASE_ADDRESS)
 * ffffffff810a9dfc: 81
 * ffffffff810a9dfd: 4a 8d 3c 00 lea (%rax,%r8,1),%rdi
 * ffffffff810a9e01: 4d 8b a4 00 f8 00 00 mov 0xf8(%r8,%rax,1),%r12

%r12 = *(phys_addr + PAGE_OFFSET_BASE_ADDRESS)
 */

How to get the physical address of mmap
user space virtual address?

$ grep -i a6b3c0 boot/System.map-4.9.0-3-amd64
ffffffff81a6b3c0 R __per_cpu_offset(PER_CPU_OFFSET_ADDRESS;)

0 - ffffffff81a6b3c0 = 0x7e594c40

How to get the page_offset virtual address?

Host kernel
VMX-root
mode

Guest kernel
VMX non-root mode

Guest userspace
VMX non-root mode

for(;;)
{

vmlaunch;
vmx_complete_atomic_exit_constprop_88(vmx);
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);

}

2
In the user space of VM,
train the IBP to simulate
the VMExit and make it run
to the hook gadget to
access the guessed virtual
address.

0xFFFFFFFFFFFFFFFF

0xFFFF880000000000

.

.

.

3

Put the next guess mapped
VA(Old PAGE_OFFSET+1GB+PA)
in the register and call the vmcall in
the user space to cause the VMExit.

1
The PA(physical address)
of the mmap page is known
from the previous step.

VA PA

mmap user space
address

PA

4
Use the side-channel attack to
determine if mmap user page is
cached. If yes, we find the
PAGE_OFFSET, otherwise, go
to step 3.

Gadget

Speculation

Load the data
from guessed VA

Shift 1GB

1GB

1GB

ret

Simulation of
VMExit

VMExit

+0x2c9d3

+0x2c9d3
user(r/w/x)

Indirect Branch Prediction and Intel® Hyper-Threading Technology
(Intel® HT Technology)

 Logic
 Core

 1

Physical Core 0

Logic
Core
 0

Indirect Branch
Predictor

 Logic
 Core

 1

Physical Core 1

Logic
Core
 0

Indirect Branch
Predictor

● In a processor supporting Intel ®
Hyper-Threading Technology, a core (or physical
processor) may include multiple logical
processors.

● In such a processor, the logical processors
sharing a core may share indirect branch
predictors. As a result of this sharing, software
on one of a core’s logical processors may be
able to control the predicted target of an
indirect branch executed on another logical
processor of the same core. This sharing occurs
only within a core.

● Software executing on a logical processor of
one core cannot control the predicted target of
an indirect branch by a logical processor of a
different core.

X

Indirect Branch Prediction

The processor uses indirect branch predictors to control only the operation of
the branch instructions enumerated in the table below.

Host predictor
mode

Guest predictor
modePredictor Mode

● To prevent attacks based on branch target injection, it
can be important to ensure that less privileged software
cannot control use of the branch predictors by more
privileged software. For this reason, it is useful to
introduce the concept of predictor mode.

● There are four predictor modes:
● 1). host-supervisor, 2). host-user, 3). guest-supervisor, and

4). guest-user.

● The guest predictor modes are considered less
privileged than the host predictor modes. Similarly, the
user predictor modes are considered less privileged than
the supervisor predictor modes.

Guest User
predictor mode

Guest
Supervisor
predictor mode

Host predictor
mode

Host user
predictor mode

Host
Supervisor
predictor mode

Mitigation of Spectre V2

1. Retpoline
a. Kernel patch(inline assembly with volatile flag cannot be

affected by the recompilation): [PATCH v6 00/10] Retpoline:
Avoid speculative indirect calls in kernel

b. Kernel space/user space recompilation with retpoline enabled
GCC compiler.

c. 2018 Feb 21: gcc packages supporting retpoline options for x86
published to Ubuntu 17.10, Ubuntu 16.04 LTS, and Ubuntu 14.04
LTS.[KB]

2. Microcode + IBRS patch
3. Microcode + IBPB patch

https://www.spinics.net/lists/kernel/msg2691430.html
https://www.spinics.net/lists/kernel/msg2691430.html
https://launchpad.net/ubuntu/+source/gcc-7/7.2.0-8ubuntu3.2
https://launchpad.net/ubuntu/+source/gcc-5/5.4.0-6ubuntu1~16.04.9
https://launchpad.net/ubuntu/+source/gcc-4.8/4.8.4-2ubuntu1~14.04.4
https://launchpad.net/ubuntu/+source/gcc-4.8/4.8.4-2ubuntu1~14.04.4
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/SpectreAndMeltdown

Mitigation of Spectre V2

Indirect branch construction

origin retpoline

jmp *%r11 call set_up_target; (1)
capture_spec: (4)
 pause;
 jmp capture_spec;
set_up_target:
 mov %r11, (%rsp); (2)
 ret; (3)

Retpoline Theory

Mitigation of Spectre V2

● To compile the whole system with the retpoline enabled GCC
compiler[pjt].

● And obviously, if you do not have the sources to the target
you are trying to protect, IBRS allows you to run it in a
protected fashion --while it cannot easily be retpolined or
the software cannot be rebuilt for some reasons[pjt].

Retpoline cost

https://lkml.org/lkml/2018/1/5/197
https://lkml.org/lkml/2018/1/5/197

Mitigation of Spectre V2 - IBRS V.S. IBPB
The CPUID instruction enumerates support for the indirect branch control
mechanisms using three feature flags in CPUID.(EAX=7H,ECX=0):EDX:[tim][intel]

https://patchwork.kernel.org/patch/10147547/
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

Mitigation of Spectre V2 - IBRS

If software sets IA32_SPEC_CTRL.IBRS to 1 after a transition
to a more privileged predictor mode, predicted targets of
indirect branches executed in that predictor mode with
IA32_SPEC_CTRL.IBRS =1 cannot be controlled by software
that was executed[intel]

1). In a less privileged
predictor mode

2). On another logical
processor.(imply STIBP)

 Logic
 Core

 1

Physical Core 0

Logic
Core
 0

Indirect Branch
Predictor

X

Guest predictor
mode

Guest User
predictor mode

Guest
Supervisor
predictor mode

Host predictor
mode

Host User
predictor mode

Host
Supervisor
predictor mode

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

Mitigation of Spectre V2 - IBRS

● If IA32_SPEC_CTRL.IBRS is already 1 before a transition to a more
privileged predictor mode, some processors may allow the predicted
targets of indirect branches executed in that predictor mode to be
controlled by software that executed before the transition. It is not
necessary to clear the bit first; writing it with a value of 1 after the
transition suffices, regardless of the bit’s original value.

● Enhanced IBRS doesn’t need to write to the register every time when
entering the mode from lower privilege to higher privilege. A
processor supports enhanced IBRS if RDMSR returns a value of 1 for
bit 1 of the IA32_ARCH_CAPABILITIES MSR.

Support Based on Software Enabling[intel]

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

Mitigation of Spectre V2 - IBRS

● Setting IA32_SPEC_CTRL.IBRS to 1 does not suffice to prevent the
predicted target of a near return from using an RSB entry created in a
less privileged predictor mode.

● Software can avoid this by using:
● An RSB overwrite sequence following a transition to a more privileged

predictor mode.
● if supervisor-mode execution prevention (SMEP) is enabled.

IBRS limitation with RSB

Mitigation of Spectre V2 - IBRS

“noibrs”/ibrs_enabled controls the IBRS feature in the SPEC_CTRL model-specific register (MSR)
when SPEC_CTRL is present in cpuid (post microcode update). When ibrs_enabled is set to 1 the
kernel runs with indirect branch restricted speculation, which protects the kernel space from
attacks (even from hyperthreading/simultaneous multi-threading attacks). When IBRS is set to 2,
both userland and kernel runs with indirect branch restricted speculation. This protects
userspace from hyperthreading/simultaneous multi-threading attacks as well, and is also the
default on AMD processors (family 10h, 12h and 16h). This feature addresses CVE-2017-5715,
variant #2.

echo 0 > /sys/kernel/debug/ibrs_enabled will turn off IBRS
echo 1 > /sys/kernel/debug/ibrs_enabled will turn on IBRS in kernel
echo 2 > /sys/kernel/debug/ibrs_enabled will turn on IBRS in both userspace and kernel

IBRS(Indirect Branch Restricted Speculation) cost

Mitigation of Spectre V2 - IBRS

● The cost of IBRS performance varies with processor generation. Skylake incurs
the least overhead. It is expected that future generations will be better
still[pjt]. Behavior with exhausted return stack predictors is not well-specified,
which means we must potentially avoid underflow. For example, in the case
that the hardware chose to instead turn to another predictor.

● A naked indirect call (with IBRS enabled) on Skylake and a retpolined call have
approximately the same cost.(I have not compared this cost for pre-Skylake
uarchs.)[pjt]

● The transition cost for enabling/disabling the feature as we schedule into (and
out of) protected code[pjt].

IBRS(Indirect Branch Restricted Speculation) cost

https://lkml.org/lkml/2018/1/5/197
https://lkml.org/lkml/2018/1/5/197
https://lkml.org/lkml/2018/1/5/197

Mitigation of Spectre V2 - IBPB

● Enabling IBRS does not prevent software from controlling
the predicted targets of indirect branches of unrelated
software executed later at the same predictor mode (for
example, between two different user applications, or two
different virtual machines). Such isolation can be ensured
through use of the IBPB command.

● The indirect branch predictor barrier (IBPB) is an indirect
branch control mechanism that establishes a barrier,
preventing software that executed before the barrier from
controlling the predicted targets of indirect branches
executed after the barrier.

Indirect branch predictor barrier (IBPB)[intel]
Guest predictor
mode

Guest User
predictor mode

Guest
Supervisor
predictor mode

Host predictor
mode

Hsot User
predictor mode

Host
Supervisor
predictor mode

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

Mitigation of Spectre V2 - IBPB

● IBPB can be used in conjunction with IBRS to account for cases that IBRS does not
cover:[intel]
● IBRS does not prevent software from controlling the predicted target of an

indirect branch of unrelated software (e.g., a different user application or a
different virtual machine) executed at the same predictor mode. Software can
prevent such control by executing an IBPB command when changing the identity
of software operating at a particular predictor mode (e.g., when changing user
applications or virtual machines).

● Software may choose to clear IA32_SPEC_CTRL.IBRS in certain situations (e.g.,
for executionwith CPL = 3 in VMX root operation). In such cases, software can
use an IBPB command on certain transitions (e.g., after running an untrusted
virtual machine) to prevent software that executed earlier from controlling the
predicted targets of indirect branches executed subsequently with IBRS
disabled.

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

Mitigation of Spectre V2 - IBPB use cases
Guest predictor
mode

Host predictor
mode

Guest predictor
mode

Host predictor
mode

User
predicto
r mode

Host predictor mode

User
predicto
r mode

Case one: a different user
application switch.

Case two: a different virtual
machine switch.

“noibpb”/ibpb_enabled controls the IBPB feature in the PRED_CMD model-specific register (MSR) if
either IBPB_SUPPORT or SPEC_CTRL is present in cpuid (post microcode update). When ibpb_enabled
is set to 1, an IBPB barrier that flushes the contents of the indirect branch prediction is run across user
mode or guest mode context switches to prevent user and guest mode from attacking other
applications or virtual machines on the same host. In order to protect virtual machines from other
virtual machines, ibpb_enabled=1 is needed even if ibrs_enabled is set to 2. If ibpb_enabled is set to 2,
indirect branch prediction barriers are used instead of IBRS at all kernel and hypervisor entry points (in
fact, this setting also forces ibrs_enabled to 0). ibpb_enabled=2 is the default on CPUs that don’t have
the SPEC_CTRL feature but only IBPB_SUPPORT. ibpb_enabled=2 doesn’t protect the kernel against
attacks based on simultaneous multi-threading (SMT, also known as hyperthreading); therefore,
ibpb_enabled=2 provides less complete protection unless SMT is also disabled. This feature addresses
CVE-2017-5715, variant #2.

Customer and vendors can disable the ibpb implementation in microcode by passing "noibpb" to the
kernel command line at boot, or dynamically with the debugfs control below:

 # echo 0 > /sys/kernel/debug/x86/ibpb_enabled

Indirect Branch Prediction Barriers (ibpb)

Mitigation of Spectre V2

IBRS V.S. Retpoline on Skylake platform

● The problem with Skylake+ is that an RSB underflow falls back to using a BTB
prediction, which allows the attacker to take control of speculation[A.C].

● The concern is that the attacker could poison the BTB for a 'ret' instruction, as in the
general case of the SP2 (conditional branch misprediction) attack, so that it predicts a
branch to an address of the attacker's choice. Now *most* of the time, one might
expect the target for that 'ret' to come from the RSB. But if there is a way to force
the RSB to empty, or the attacker is just happy to keep trying, and wait for things like
SMI to make it work every now and then, then it *might* be exploitable.

● Also remember that sibling threads share a BTB, so you can't rely on isolated
straight-line codepath on the current cpu for safety. (e.g. by issuing an IBPB on every
entry to supervisor mode).[A.C] <-- IBRS is the only way to mitigate Spectre V2 on
Skylake?

http://lkml.iu.edu/hypermail/linux/kernel/1801.0/03137.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1577727.html

Mitigation of Spectre V2

● To prevent this, in some cases it may be necessary to “refill” the return stack to
guarantee that underflow cannot occur[pjt]. Cases which this applies to include:
● When we transfer control into protected execution (so that we do not

perturb the steps that it may have taken to preserve the integrity of their
hardware return prediction).

● Guest to hypervisor transitions, context-switches into a protected
process, interrupt delivery (and return).

● When we resume from a hardware sleep state which may not have
preserved this cache (e.g., mwait).

● When natural execution potentially exhausts the return stack in a
protected application. (Note that this is a particular corner case, with more
limited exploitability -- we expect that most binaries deploying retpoline
protections will not require this specific mitigation.)

Skylake limitation on retpoline underflow - refill the RSB
d1c99108af3c Revert "x86/retpoline: Simplify vmexit_fill_RSB()"

https://support.google.com/faqs/answer/7625886?hl=en

Mitigation of Spectre V2
IBRS V.S. Retpoline on Skylake platform

● On Skylake the target for a 'ret' instruction may also come from the BTB. So
if you ever let the RSB (which remembers where the 'call's came from get
empty, you end up vulnerable.) Other than the obvious call stack of more
than 16 calls in depth, there's also a big list of other things which can
empty the RSB, including an SMI. Which basically makes retpoline on
Skylake+ *very* hard to use reliably. The plan is to use IBRS there and not
retpoline[woodhouse].

● A naked indirect call (with IBRS enabled) on Skylake and a retpolined call
have approximately the same cost[pjt].

https://lkml.org/lkml/2018/1/4/708
https://lkml.org/lkml/2018/1/5/197

Spectre V2 - Microcode
● Intel Microcode fix (#intel-microcode 3.20180108.0~ubuntu16.04.2)

● sudo apt install -y intel-microcode
1. install the initramfs-tools, iucode-tool and intel-microcode packages;
2. configure the system to use a initramfs created by initramfs-tools during

boot (Debian kernels do this by default);
3. make sure the initramfs for the kernel you will use was updated (it should

have been done automatically for the default boot kernel, at least for
Debian kernels), using ”update-initramfs -u”, and possibly “update-initramfs
-u -k <kernel version>”

4. reboot.
● Where is the Intel microcode being installed?

● /lib/firmware/intel-ucode/

● How to disable the intel microcode loading at boot time:
● “IUCODE_TOOL_INITRAMFS=no” in /etc/default/intel-microcode
● Or purge the package.

https://launchpad.net/ubuntu/+source/intel-microcode/3.20180108.0~ubuntu16.04.2

Spectre V2 - Microcode

● Intel Microcode fix (#intel-microcode 3.20180108.0~ubuntu16.04.2)
● By default, the “iucool_tool --scan-system” scan the underlying CPU architecture

to load specific microcode. “IUCODE_TOOL_SCANCPUS=no” will install all micro
codes or installed specific micro code by ‘IUCODE_TOOL_EXTRA_OPTIONS=""’.

● By default, the microcode module is disabled in
modprobe.d/intel-microcode-blacklist.conf:

● The microcode module attempts to apply a microcode update when it autoloads. This
is not always safe, so we block it by default.

● In v4.4-rc1, the config name changed from MICROCODE_INTEL_EARLY to
MICROCODE_INTEL

● $ git describe --contains fe055896c040df571e4ff56fb196d6845130057b
v4.4-rc1~154^2~6

https://launchpad.net/ubuntu/+source/intel-microcode/3.20180108.0~ubuntu16.04.2

Intel: We now won't ever patch Spectre
variant 2 flaw in these chips

Microcode Revision Guidance - April 2 2018

After a comprehensive investigation of the microarchitectures and microcode capabilities for these
products, Intel has determined to not release microcode updates for these products for one or more
reasons including, but not limited to the following:

● Micro-architectural characteristics that preclude a practical implementation of features
mitigating Variant 2 (CVE-2017-5715)

● Limited Commercially Available System Software support

● Based on customer inputs, most of these products are implemented as “closed systems” and
therefore are expected to have a lower likelihood of exposure to these vulnerabilities.

The list of CPU families Intel won't patch are:

Bloomfield, Bloomfield Xeon, Clarksfield, Gulftown, Harpertown Xeon C0, Harpertown Xeon E0, Jasper
Forest, Penryn/QC, SoFIA 3GR, Wolfdale C0, Wolfdale M0, Wolfdale E0, Wolfdale R0, Wolfdale Xeon C0,
Wolfdale Xeon E0, Yorkfield, Yorkfield Xeon.

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf

Variant 3: rogue data cache load A.K.A
MeltDown(CVE-2017-5754)

Meltdown PoC

CPUs: information leak using speculative execution - Comment 2 is the PoC
provided by Jann Horn.

https://github.com/paboldin/meltdown-exploit The meltdown PoC summarized
from the spectre paper.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1272#c2
https://github.com/paboldin/meltdown-exploit
https://spectreattack.com/spectre.pdf

Meltdown mitigation

● Variant 3: rogue data cache load (CVE-2017-5754)
● Mitigated by kernel pti patch set(previous name is KAISER)
● [patch 00/60] x86/kpti: Kernel Page Table Isolation (was KAISER)

● All of the stable kernel backports are based on KAISER
● Dave Hansen backported to v4.14

● [PATCH 00/23] KAISER: unmap most of the kernel from userspace page tables
● KAISER: hiding the kernel from user space

● GregKH to 4.{4,9,14}
● [PATCH 4.4 00/37] 4.4.110-stable review

● Sasha Levin to 4.1
● Hugh Dickins to 3.18 (git tree cannot be found?)
● Ben Hutchings to 3.{2,16}
● Juerg Haefliger to 3.13

https://lkml.org/lkml/2017/12/4/709
https://misc0110.net/web/files/kaiser_slides.pdf
https://marc.info/?t=150948919700002&r=1&w=2
https://lwn.net/Articles/738975/
https://www.spinics.net/lists/stable/msg208664.html

Meltdown mitigation

Page Table Isolation (pti)

“nopti”/pti_enabled controls the Kernel Page Table Isolation feature,which isolates kernel pagetables
when running in userland. This feature addresses CVE-2017-5754, also called variant #3, or Meltdown.

Customers and vendors can disable the PTI feature by passing “nopti” to the kernel command line at
boot, or dynamically with the runtime debugfs control below:

 # echo 0 > /sys/kernel/debug/x86/pti_enabled

Performance impact

● Facts About the New Security Research Findings and Intel® Products
● Firmware Updates and Initial Performance Data for Data Center Systems
● Intel Security Issue Update: Initial Performance Data Results for Client Systems
● Speculative Execution Exploit Performance Impacts - Describing the performance impacts to

security patches for CVE-2017-5754 CVE-2017-5753 and CVE-2017-5715

https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://newsroom.intel.com/news/firmware-updates-and-initial-performance-data-for-data-center-systems/
https://newsroom.intel.com/editorials/intel-security-issue-update-initial-performance-data-results-client-systems/
https://access.redhat.com/articles/3307751
https://access.redhat.com/articles/3307751

Variant 4: Speculative Store Bypass
(CVE-2018-3639)

Overview of Speculative Store Bypass

Assume that a key K exists. The attacker is allowed to know the value of M, but not the value

of key K. X is a variable in memory.

1. X = &K; // Attacker manages to get variable with address of K stored into pointer X

<at some later point>

2. X = &M; // Does a store of address of M to pointer X

3. Y = Array[*X & 0xFFFF]; // Dereferences address of M which is in pointer X in order to

 // load from array at index specified by M[15:0]

When the above code runs, the load from address X that occurs as part of step 3 may execute
speculatively and, due to memory disambiguation, initially receive a value of address of K instead of the
address of M. When this value of address of K is dereferenced, the array is speculatively accessed with
an index of K[15:0] instead of M[15:0]. The CPU will later reexecute the load from address X and use
M[15:0] as the index into the array. However, the cache movement caused by the earlier speculative
access to the array may be analyzed by the attacker to infer information about K[15:0].

Ref: [11][13][14] PoC:[12]

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/Variant4
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

Supplementary Information

Spectre(Spectre / Variant 2 Mitigation with IBRS)

https://docs.google.com/document/d/e/2PACX-1vSMrwkaoSUBAFc6Fjd19F18c1O9pudkfAY-7lGYGOTN8mc9ul-J6pWadcAaBJZcVA7W_3jlLKRtKRbd/pub

Affected ARM Cores of Spectre & Meltdown

https://developer.arm.com/support/security-update

https://developer.arm.com/support/security-update

References

[1]. Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR

[2]. MAMAS - Computer Architecture - Branch Prediction - by Dr. Avi Mendelson

[3]. Computer Structure - Advanced Branch Prediction - by Lihu Rappoport and
Adi Yoaz

[4]. ECE 4100/6100 Advanced computer architecture - Prof. Hsien Hsin Lee - L12
P6 and NetBurst Microarchitecture

[5]. Reading privileged memory with a side-channel - by Jann Horn

[6]. Cache Side-Channel Attacks and the case of Rowhammer Daniel Gruss IAIK,
Graz University of Technology

[7]. Last-Level Cache Side-Channel Attacks are Practical - paper

[8]. Last-level cache side channel attacks are practical - slide - Fangfei Liu, Yuval
Yarom, Qian Ge, Gernot Heiser and Ruby B. Lee

http://www.cs.ucr.edu/~nael/pubs/micro16.pdf
http://slideplayer.com/slide/4670017/
http://slideplayer.com/slide/9418707/
http://slideplayer.com/slide/9418707/
https://www.slideshare.net/HsienHsinLee/lec12-computer-architecture-by-hsienhsin-sean-lee-georgia-tech-p6-netburst-pentiium-4
https://www.slideshare.net/HsienHsinLee/lec12-computer-architecture-by-hsienhsin-sean-lee-georgia-tech-p6-netburst-pentiium-4
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://gruss.cc/files/cache_and_rowhammer_ruhrsec.pdf
https://gruss.cc/files/cache_and_rowhammer_ruhrsec.pdf
http://palms.ee.princeton.edu/system/files/SP_vfinal.pdf
https://pdfs.semanticscholar.org/81f6/c43188a2308b36a0c47570f7e7ec19cc20e1.pdf
https://pdfs.semanticscholar.org/81f6/c43188a2308b36a0c47570f7e7ec19cc20e1.pdf

[9]. CPUs: information leak using speculative execution by Jann Horn - Comment
5

[10].
http://snapshot.debian.org/archive/debian/20170701T224614Z/pool/main/l/linu
x/linux-image-4.9.0-3-amd64_4.9.30-2%2Bdeb9u2_amd64.deb

[11]. Speculative Execution Side Channel Mitigations. Revision 2.0 - Intel

[12]. speculative execution, variant 4: speculative store bypass

[13]. Intel Analysis of Speculative Execution Side Channels. Revision 3.0 - Intel

[14]. Ubuntu KB - Spectre v4

Branch prediction Related Reference

[15]. Com 506 Computer Design - Lecture 3 Branch Prediction - Prof. Taeweon
Suh

https://bugs.chromium.org/p/project-zero/issues/detail?id=1272#c5
https://bugs.chromium.org/p/project-zero/issues/detail?id=1272#c5
http://snapshot.debian.org/archive/debian/20170701T224614Z/pool/main/l/linux/linux-image-4.9.0-3-amd64_4.9.30-2%2Bdeb9u2_amd64.deb
http://snapshot.debian.org/archive/debian/20170701T224614Z/pool/main/l/linux/linux-image-4.9.0-3-amd64_4.9.30-2%2Bdeb9u2_amd64.deb
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/Variant4
http://slideplayer.com/slide/7566661/
http://slideplayer.com/slide/7566661/

Branch Prediction Related Reference

[16]. Lecture 9 - Branch Prediction

[17]. CPE 631: Branch Prediction - University of Alabama in HuntsVille -
Aleksandar Milenkovic

[18]. Computer Architecture - Advanced Branch Prediction - by Dan Tsafrir -
2012/05/21

[19]. Dynamic Branch Predictor - EE524 - Cpts561 Computer Architecture

[20]. Determining Branch Direction

[21]. 18-447 Computer Architecture - Lecture 10 - Branch Prediction II - Prof.
Onur Mutlu - Carnegie Mellon University

[22]. ECE 4100/6100 Advanced computer architecture - Lecture 5 Branch
Prediction - Prof. Hsien Hsin Lee - Georgia Institute of Technology

https://www.slideshare.net/lerruby/like-2014214
http://slideplayer.com/slide/4752249/
http://slideplayer.com/slide/4752249/
http://slideplayer.com/slide/7433782/
http://slideplayer.com/slide/7433782/
http://slideplayer.com/slide/3397228/
http://slideplayer.com/slide/5121632/
http://slideplayer.com/slide/12581426/
http://slideplayer.com/slide/12581426/
https://www.slideshare.net/HsienHsinLee/lec5-computer-architecture-by-hsienhsin-sean-lee-georgia-tech-branch-predictor
https://www.slideshare.net/HsienHsinLee/lec5-computer-architecture-by-hsienhsin-sean-lee-georgia-tech-branch-predictor

Branch Prediction Related Reference

[23]. Microbenchmark and Mechanisms for reverse engineering of branch
predictor structure - LaCASA laboratory - Alabama Huntsville

[24]. Prediction and Speculation

[25]. Advanced Microarchitecture - Lecture 4 Branch Predictor - Georgia
Technology Institute

[26]. Advanced Branch Predictors - Guang Pan, Ming Lu

[27]. Computer Architecture CS6354 - Branch Prediction - Samira Khan -
University of Virginia

[28]. Bimode cascading: Adaptive Rehashing for ITTAGE Indirect Branch
Predictor - The university of Tokyo

https://www.slideserve.com/cooper/microbenchmarks-and-mechanisms-for-reverse-engineering-of-branch-predictor-structures
https://www.slideserve.com/cooper/microbenchmarks-and-mechanisms-for-reverse-engineering-of-branch-predictor-structures
https://www.slideshare.net/rinnocente/computer-architecture-branch-prediction
http://slideplayer.com/slide/5110182/
http://slideplayer.com/slide/5110182/
http://slideplayer.com/slide/7661937/
http://slideplayer.com/slide/10917906/
http://slideplayer.com/slide/10917906/
http://slideplayer.com/slide/1395914/
http://slideplayer.com/slide/1395914/

