Three-hot Technologies and Their Usages at Huawei’s Public Cloud

Liu Jinsong, Huang Zhichao
Huawei
Agenda

• Online update requirements @ cloud

• Huawei’s 3-hot technologies
 – Hot patch
 – Hot replacement
 – Hot migration (live migration 😊)

• 3-hot usages @ Huawei Cloud
Cloud is complicated, need fix/update frequently
 - Bugs & security holes
 - Hundreds of CVE reports per year
 - High risk security holes
 - XSA-108
 - Intel security hole: spectre, meltdown, and … (it’s just 1 hole but …)
 - Components upgrade
 - Openstack components: nova, neutron, etc.
 - VM related components: libvirt, qemu, ovs, vims, etc.
 - Fast upgrade support newly-add features, say, once per month
 - Hostos upgrade
 - New CPU/Chipset support, i.e., Skylake adds ~40 hardware features
 - New kernel support, w/ better performance and newly-add features
 - CPU microcode upgrade, hardware broken
 - Microcode for Intel security hole
 - Memory error: UCNA, SRAO, SRAR
 - Other unbelievable hardware broken: i.e., CPU crazy fans 😞
Online update requirements @ cloud

• We have to fix/upgrade the SPEED car !!!
Huawei’s 3-hot technologies

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot patch</td>
<td>• Bugfix and security holes</td>
<td>• Usually for small but critical fix</td>
</tr>
<tr>
<td></td>
<td>• Light-weight operation</td>
<td>• Do not support newly-add functions/features</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Some bugs/security holes are hard to fix via hot patch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Troublesome for SRE to manage and verify patch branches</td>
</tr>
<tr>
<td>hot replacement</td>
<td>• Component replaced entirely</td>
<td>• Not good at kernel fix/update</td>
</tr>
<tr>
<td></td>
<td>• Support newly-add features</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Medium-weight operation</td>
<td></td>
</tr>
<tr>
<td>hot migration</td>
<td>• Kernel upgrade</td>
<td>• Cannot migrate vm w/ sr-iov</td>
</tr>
<tr>
<td>(= live migration in Chinese 😊)</td>
<td>• Not only for upgrade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Solve problems what hot patch or hot replacement cannot handle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hot patch

- **Hot-patch for Xen**
 - xSplice-like solution (thanks Konrad @ Oracle)
 - Trampoline jump at the head of old func
 - Wait for all pCPUs to stop and apply together
 - clean stack ensure not running at any CPU
 - Idle
 - Before vmentry
 - cpuid serializing
 - Enhancement
 - Auto build from a patch and auto test
 - A framework to hot-patch a POD
 - Retry, revert, and reboot handler
 - Support hot-patching assembly code

- **Hot-patch for KVM & Linux**
 - livepatch combine consistency model of kGraft + kPatch
 - https://www.slideshare.net/GlobalLogicUkraine/linux-kernel-live-patching

- **Hot-patch for usrspace processes**
 - Huawei’s Dopra, a framework
 - Patching qemu, ovs, vims, …
Hot patch use case @ Huawei cloud

- **Fix CVE-2017-5715 (Intel Spectre) at Xen hypervisor**
 - xSplice fix C function but cannot fix assembly code
 - xpatch/tools/create-diff-object.c
 - Define and handle special symbol (w/ prefix '_fix_')
 - Find correct **assembly address** to replace
 - Fix `vmx_asm_vmexit_handler`
 - `arch/x86/hvm/vmx/entry.S`
 - `arch/x86/hvm/vmx/entry.S`
 - `@@ -116,6 +116,81 @@ vmx_asm_vmexit_handler:`
 - `ALIGN`
 - `.globl _fix_vmx_asm_vmexit_handler`
 - `_fix_vmx_asm_vmexit_handler:` // special symbol w/ prefix '_fix_'
 - `push %rdi`
 - `push %rsi`
 ...
 - `push %r15`
 + `xor %edi,%edi` // fix assembly
 + `xor %esi,%esi`
 + ...
 + `xor %r15,%r15`
 `get_current(bx)`
 ...

Advantages and disadvantages of hot patch

- Hot patch
 - Light-weight operation for cloud SRE
 - But troublesome for SRE to manage baseline branches
 - Some fix are hard to be hot-patched
 - data structure (shadow variable after kernel 4.15)
 - .rodata
 - cannot change function api and semantic
 - unsafe to fix ftrace handler w/ infinite loop risk
 - unsafe to fix NMI handler
 - booting stage bugfix
 - inline function
 - should be very careful about deadlock
 - do not support newly-add functions
 -
Hot replacement

- **Components entirely upgrade**
 - Reboot-able components: VM runtime-unrelated
 - nova, neutron, libvirt, etc.
 - Non reboot-able components: VM runtime-related
 - compute (qemu), storage (vims), network (ovs), etc.
Hot replacement framework

- Unified replacement framework for OVS (network) and VIMS (storage)
 - Preload and lazy-offload, fast switching (less than 100ms)
 - State vs. stateless design
 - Add component agent connecting qemu (if possible) so that no disconnect and no re-connect

- Qemu is another story
Hot replacement - qemu

- **Qemu hot replacement**
 - **Way 1:** migrate vm locally
 - may fail since insufficient memory
 - may fail for VM under high dirty page speed
 - **Way 2:** share page
 - Zero copy
 - Performance impact by transparent huge pages
 - **Way 3:** share page table, cover old qemu VMAs except that of VM
 - Zero copy
 - keep pid unchange
 - Much bigger switch downtime, kill old qemu then covered by new qemu VMAs
 - Cannot revert if new qemu fail
 - **Way 4:** share page table, but exec new qemu process
 - Zero copy
 - Preload new qemu sharing VM PUD with old qemu
 - Pause old qemu and unpause new qemu
 - Lazy-offload old qemu if new qemu success, or, revert old qemu if new qemu fail
 - Different pid but acceptable
Hot migration -- challenges

• Live migration @ virtualization
 – Xen live migration
 • PV is unfriendly to live migration
 – Buggy PV disconnect and re-connect
 – Ecosystem issue, work around by guest whitelist but >15% guest cannot migrate
 • Support migration among different CPUs via emulated tsc but w/ performance issue

 – KVM live migration
 • Not support migration among different CPUs because of native tsc (until Skylake tsc scaling)

 – SR-IOV migration
 – Giant VM migration under huge memory dirty ratio
Hot migration -- challenges

- **Live migration @ cloud**
 - Cloud environment challenges
 - Cloud environment is very complicated and unfriendly to live migration
 - Different software version and configuration
 - Different hardware types: CPU, MSRs
 - Even buggy network switch may result in migration error !!
 - Different storage/network types
 - Performance challenges
 - Network breaktime, growing w/ VPC scale (10S->10 minutes)
 - Communication among cloud components
 - Nova, neutron, libvirt, etc.
 - Reliability challenges
 - Migrating VM may dead or brain-split
 - Ensure vm 100% survive when migrate fail
 - Large scale parallel migration challenges
 - Server congestion, network congestion, etc.
 - Gratuitous ARP may not accepted by parallel migrating vms
 - Malfunction server isolation
 - Blablabla ……
Hot migration design @ Huawei cloud

- **De-couple**
 - Event mechanism and publisher-subscriber model
 - Support different storage/network types

- **Reliability**
 - Shakehands and roll-back when anything wrong (vm will survive)
 - How about shakehands broken (say, network issue)?
 - **image lock**: who get the image lock will survive (vm will not brain-split)

- **Performance**
 - Fast event channel for performance-critical ops
 - Network trampoline when VPC path not ready

- **Giant vm migration**
 - Support any giant vm migration under any dirty page ratio
 - If only transfer ratio > dirty page ratio
Hot migration result @ Huawei cloud

- **Live migration for OS upgrade at all Huawei cloud sites**
 - **Reliability**
 - 99.99% migration success
 - 100% vm survive when migration fail for whatever reason

 - **Performance**
 - CPU downtime: ~25ms
 - VPC network breaktime:
 - 82% breaktime < 50ms
 - 99% breaktime < 200ms
 - 100% breaktime < 500ms

 - **Degree of parallelism**
 - Upgrade > 2000 servers per night
 - Technically support much higher parallelism but no enough free servers

 - Support all giant vm live migration
Hot migration use case @ Huawei cloud

- MCE/Disk error/Filesyststem readonly …..
 - ~1% server crash per day, while ~48% hardware issue
- Dynamic resource scheduling
- Distributed power management
- Fix CVE-2017-5715 (Intel Spectre) at KVM
 - Better performance than upstream: 30% -> 10%-
 - Retpoline optimization: remove unnecessary retpoline (no vcpus)
 - IBPB/IBRS optimization: remove unnecessary IBPB/IBRS (novcpus, A->Idle->A)
 - Microcode update, so that guest upgrade by itself
“Quote Placeholder”
LINUX CON
containercon
CLOUD OPEN
CHINA

THINK OPEN
开放性思维