W redhat

Storage Performance Tuning for
FAST! Virtual Machines

Fam Zheng
Senior Software Engineer

LC3-2018

Outline

Virtual storage provisioning
NUMA pinning

VM configuration options
Summary

Appendix

Q. redhat.

Virtual storage provisioning

- redhat.

Provisioning virtual disks

Virtual machine

o

- Virtual storage provisioning

IS to expose host persistent
storage to guest for
applications’ use.

- A device of a certain type is

presented on a system bus

- GQuest uses a corresponding

driver to do I/O

- The disk space is allocated

from the storage available
on the host.

Q. redhat.

QEMU emulated devices

- Device types: virtio-blk, virtio-scsi, IDE, NVMe, ...
- QEMU Dblock features

gcowZ2, live snapshot

throttling

block migration

incremental backup

- Easy and flexible backend configuration

Wide range of protocols: local file, NBD, iSCSI, NFS, Gluster,
Ceph, ...

Image formats: qcow?2, raw, LUKS, ...
« Pushed hard for performance
IOThread polling; userspace driver; multiqueue block layer (WIP)

Q. redhat.

QEMU emulated device I/O (file

backed)

vCPU

QEMU
main
thread

1/0 Request Lifecycle

Guest virtio driver
KVM iotventfd
vdev vrint; handler
QEMU bltck layer
LinuxAIO/P(l)SIX syscall
Host VFS/bIot:k/SCSI layer
Host dev?ce driver
Hardiware

Q. redhat

QEMU virtio IOThread

A dedicated thread to handle

QEMU virtio vrings

main

vCPU thread - Now fully support QEMU block

layer features

* (Previously known as x-data-
plane of virtio-blk, limited to
raw format, no block jobs)

» Currently one IOThread per

device
Host « Multi-queue support is being
storage worked on

« Adaptive polling enabled
* Optimizes away the event
notifiers from critical path
(Linux-aio, vring, ...)
* Reduces up to 20% latency

O. redhat.

QEMU userspace NVMe driver

With the help of VFIO, QEMU
accesses host controller’s
submission and completion queues

vCPU |IOThread without doing any syscall.
MSI/IRQ is delivered to I0Thread
NVMe drv with eventfd, if adaptive polling of

completion queues doesn’t get
result.

No host file system, block layer or
SCSI. Data path is shortened.

QEMU process uses the controller
exclusively.

(New in QEMU 2.12)

Q. redhat.

SPDK vhost-user

QEMU

OENMV
i

%

M ain

< shared memory _—

r

SPDK vhost

Virtio queues are handled
by a separate process, SPDK
vhost, which is built on top
of DPDK and has a

userspace poll mode NVMe
driver.

QEMU IOThread and host

kernel is out of data path.
Latency is greatly reduced
by busy polling.

No QEMU block features. No
migration (w/ NVMe pmd).

Q. redhat

vflo-pci device assignment

Highly efficient. Guest driver
ssssssss device queues directly
without VMEXIT.

No block features of host system or
QEMU. Cannot do migration.

11

Provisioning virtual disks

Type Configuration QEMU block
features

IDE v

QEMU NVMe

emulated
virtio-blk,
virtio-scsi 4
vhost-scsi X

host

vhnos SPDK X
vhost-user

Device : .

assignment viio-pci X

Migration

N X SN NS

x

Special
requirements

Hugepages

Exclusive device
assignment

Sometimes higher performance means less flexibility

Supported in

current RHEL/RHV

v

xX X N X

Q. redhat.

fio randread bs=4k iodepth=1 numjobs=1

host /dev/nvmeOnl

vfio-pci

vhost-user-blk (SPDK) (**)

virtio-blk, w/ iothread, userspace driver
virtio-blk, w/ iothread

virtio-scsi, w/ iothread

ahci

2000 4000 6000 8000 10000 12000
IOPS

o

Backend: NVMe, Intel® SSD DC P3700 Series 400G

Host: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, Fedora 28

Guest: Q35, 1 vCPU, Fedora 28

QEMU: 8e36d27c5a

(**): SPDK poll mode driver threads take 100% host CPU cores, dedicatedly

1> [*]: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

NUMA Pinning

- redhat.

14

NUMA (Non-uniform memory
access)

|IOThread

NVMe drv

Goal: put vCPU, IOThread and virtual memory on the same NUMA
node with the host device that undertakes 1/O

Q. redhat

15

Automatic NUMA balancing

Kernel feature to achieve good NUMA locality
Periodic NUMA unmapping of process memory
NUMA hinting fault

Migrate on fault - moves memory to where the program using it
runs

Task NUMA placement - moves running programs closer to their
memory

Enabled by default in RHEL:
cat /proc/sys/kernel/numa_balancing
1

Decent performance in most cases
Disable it if using manual pinning

Q. redhat.

Manual NUMA pinning

Option 1: Allocate all vCPUs and virtual memory on the optimal
NUMA node

$ numactl -N 1 -m 1 gemu-system-x86 64 ...
Or use Libvirt (*)

Restrictive on resource allocation:
Cannot use all host cores
NUMA-local memory is limited

Option 2: Create a guest NUMA topology matching the host, pin
|OThread to host storage controller's NUMA node

Libvirt is your friend! (*)
Relies on the guest to do the right NUMA tuning

L * See appendix for Libvirt XML examples ‘ redhat.

fio randread bs=4k iodepth=1 numjobs=1

NUMA pinning

no NUMA pinning

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Backend: Intel® SSD DC P3700 Series
Host: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 2 sockets w/ NUMA, Fedora 28
Guest: Q35, 6 vCPU, 1 socket, Fedora 28, NUMA balancing disabled. Virtual device: virtio-blk w/ I0Thread

QEMU: 8e36d27c5a

17 [*]: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

VM Configuration Options

- redhat.

Raw block device vs image file

Image file is more flexible, but slower

Raw block device has better performance, but harder to
manage

Note: snapshot is supported with raw block device. E.qg:

$ gemu-img create -f qcow?2 -b /path/to/base/image.qcow?2 \
/dev/sdc

= ‘ redhat

QEMU emulated device I/O (block
device backed)

vCPU

|IOThread

Using raw block device may
improve performance: no file

system in host.

O. redhat.

Middle ground: use LVM

LVM is much more flexible and easier to manage than raw block or
partitions, and has good performance

fio randrw bs=4k iodepth=1 numjobs=1
14000

12000

10000
8000
6000
4000
2000

0

raw file (xfs) block dev

Backend: Intel® SSD DC P3700 Series

Host: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 2 sockets w/ NUMA, Fedora 28

Guest: Q35, 6 vCPU, 1 socket, Fedora 28, NUMA pinning. Virtual device: virtio-blk w/ I0Thread
QEMU: 8e36d27c5a

,1 [*I: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

Using QEMU VirtlO I0Thread

When using virtio, it's recommended to enabled I0Thread:
gemu-system-x86 64 .. |\

-object iothread, id=iothreadO |\
-device virtio-blk-pci,iothread=iothread0, id=.. |
-device virtio-scsi-pci,iothread=iothread0, id=..

Or in Libvirt...

22

Q. redhat.

23

Using QEMU VirtlO I0Thread
(Libvirt)

<domain>

<iothreads>1l</iothreads>

<disk type='file' device='disk'>
<driver name='gemu' type='raw' cache='none' iothread="'1"'/>
<target dev='vda' bus='virtio'/>
</disk>
<devices>
<controller type='scsi' index='0"' model="virtio-scsi'>
<driver iothread="1"'/>

</controller>
</devices>

</domain>

Q. redhat.

virtio-blk with and without enabling IOThread

fio randread bs=4k iodepth=1 numjobs=1
10000
9000
8000
7000
6000
5000
4000
3000
2000

1000

with IOThread without IOThread

Backend: Intel® SSD DC P3700 Series

Host: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 2 sockets w/ NUMA, Fedora 28
Guest: Q35, 6 vCPU, 1 socket, Fedora 28, NUMA pinning. Virtual device: virtio-blk
QEMU: 8e36d27c5a

-4 [*I: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

virtio-blk vs virtio-scsi

- Use virtio-scsi for many disks, or for full SCSI support (e.qg.
unmap, write same, SCSI pass-through)

« virtio-blk DISCARD and WRITE ZEROES are being worked on

- Use virtio-blk for best performance
fio blocksize=4k numjobs=1 (IOPS)

virtio-scsi, iodepth=4, randrw [
vitio-blk, iodepth=4, randrw |
virtio-scsi, iodepth=1, randrw [
virtio-blk, iodepth=1, randrw _
virtio-scsi, iodepth=4, randread [—"
vitio-blk, iodepth=4, randread [—"

virtio-scsi, iodepth=1, randread

virtio-blk, iodepth=1, randread | S

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Backend: Intel® SSD DC P3700 Series; QEMU userspace driver (nvme://)
Host: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 2 sockets w/ NUMA, Fedora 28

Guest: Q35, 6 vCPU, 1 socket, Fedora 28, NUMA pinning. IOThread enabled.
QEMU: 8e36d27c5a

,s [*]: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

26

Raw vs qcow?2

- Don’t like the trade-off between features and performance?
« Try increasing qcow?2 run-time cache size

gemu-system-x86_64 .. \

-drive \
file=my.qcow2, if=none, id=drive0, aio=native, cache=none, \
cache-size=16M \

« Orincrease the cluster _size when creating qcow2 images

gemu-img create -f gcow2 -0 cluster_size=2M my.gcow2 100G

Q. redhat.

Raw vs qcow?2

fio blocksize=4k numjobs=1 iodepth=1 (IOPS)
raw, randread
gcow?2 (2M cluster), randread

gcow?2 (64k cluster, 16M cache), randread

qcow?2 (64k cluster), randread

raw, randrw

gcow?2 (2M cluster), randrw

gcow?2 (64k cluster, 16M cache), randrw

gcow?2 (64k cluster), randrw -
0

2000 4000 6000 8000 10000 12000

Backend: Intel® SSD DC P3700 Series, formatted as xfs; Virtual disk size: 100G; Preallocation: full
Host: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 2 sockets w/ NUMA, Fedora 28

Guest: Q35, 6 vCPU, 1 socket, Fedora 28, NUMA pinning. Virtual device: virtio-blk w/ IOThread
QEMU: 8e36d27c5a

,7 [*I: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

AlO: native vs threads

- aio=native is usually better than aio=threads

- May depend on file system and workload
- ext4 native is slower because io_submit is not implemented async

fio 4k randread numjobs=1 iodepth=16 (IOPS)

120000
100000
80000
60000
40000
20000
0
xfs, native ext4, ext4, na- nvme, nvme, na-
threads threads tive threads tive

Backend: Intel® SSD DC P3700 Series

Host: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 2 sockets w/ NUMA, Fedora 28

Guest: Q35, 6 vCPU, 1 socket, Fedora 28, NUMA pinning. Virtual device: virtio-blk w/ I0Thread
QEMU: 8e36d27c5a

,s L[*]: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

29

Image preallocation

Reserve space on file system for user data or metadata:

$ gemu-img create -f $fmt -o preallocation=$mode test.img
100G

Common modes for raw and qcow?2:
off: no preallocation
falloc: use posix_fallocate() to reserve space
full: reserve by writing zeros

gqcow?2 specific mode:

metadata: fully create L1/L2/refcnt tables and pre-calculate cluster
offsets, but don’t allocate space for clusters

Consider enabling preallocation when disk space is not a
concern (it may defeat the purpose of thin provisioning)

Q. redhat.

Image preallocation

- Mainly affect the first pass of write performance after creating
VM

fio 4k randwrite numjobs=1 iodepth=1 (IOPS)

gqcow?2(2M cluster), full
qcow?2(2M cluster), falloc
qcow?2(2M cluster), metadata
qcow?2(2M cluster), off
qcow?2, full

gcow?2, falloc

gcow?2, metadata
qcow?2, off .

raw, full

raw, falloc

raw, off

5000 10000 15000 20000 25000

o

Backend: Intel® SSD DC P3700 Series; File system: xfs
Host: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 2 sockets w/ NUMA, Fedora 28
Guest: Q35, 6 vCPU, 1 socket, Fedora 28, NUMA pinning. Virtual device: virtio-blk w/ IOThread

QEMU: 8e36d27c5a

;30 [*]: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

31

Cache modes

- Cache modes consist of three separate semantics

Disk write cache Host page cache Ignore flush
bypassing (dangerous!)
(O_DIRECT)
writeback (default) Y N N
none Y Y N
writethrough N N N
directsync N Y N
unsafe Y N Y

Usually cache=none is the optimal value

To avoid redundant page cache in both host kernel and guest kernel
with O DIRECT

- But feel free to experiment with writeback/directsync as well
- unsafe can be useful for throwaway VMs or guest installation

Q. redhat.

NVMe userspace driver in QEMU

- Usage
Bind the device to vfio-pci.ko
modprobe vfio
modprobe vfio-pci

echo 0000:44:00.0 >
/sys/bus/pci/devices/0000:44:00.0/driver/unbind

echo 8086 0953 > /sys/bus/pci/drivers/vfio-pci/new id
Use nvme:// protocol for the disk backend
gemu-system-x86 64 ...\

-drive file=nvme://0000:44:00.0/1,if=none,id=drive0 \
-device virtio-blk,drive=drive0,id=vblkO,iothread=...

Q. redhat.

userspace NVMe driver vs linux-aio

fio randread bs=4k numjobs=1

userspace driver (iodepth=4)

linux-aio (iodepth=4)

userspace driver (iodepth=1)

linux-aio (iodepth=1)

0 5000 10000 15000 20000 25000 30000 35000 40000

Backend: Intel® SSD DC P3700 Series

Host: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 2 sockets w/ NUMA, Fedora 28

Guest: Q35, 6 vCPU, 1 socket, Fedora 28, NUMA pinning. Virtual device: virtio-blk w/ I0Thread
QEMU: 8e36d27c5a

;3 [*]: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

|O scheduler

- blk-mq has been enabled on virtio-blk and virtio-scsi
- Available schedulers: none, mg-deadline, , bfq

- Select one of none, mg-deadline and kyber depending on your
workload, if using SSD

fio 4k randread numjobs=1 iodepth=16 (IOPS)

90000
80000
70000
60000
50000
40000
30000
20000

10000

//\’\ //\> c)//'\’\ //\’\ //b‘\ //b‘\ //b‘\ //b‘\

X
O O b"”Q& b"’é
N\ N\ N\ . . .
PPN NN

342 [*I: numbers are collected for relative comparison, not representative as a formal benchmarking result ‘ rednat

35

Summary

Plan out your virtual machines based on your own constraints:
Live migration, IO throttling, live snapshot, incremental backup,
hardware availability, ...

Workload characteristics must be accounted for
Upgrade your QEMU and Kernel, play with the new features!
Don’t presume about performance, benchmark it!

NVMe performance heavily depends on preconditioning, take
the numbers with a grain of salt

Have fun tuning for your FAST! virtual machines :-)

Q. redhat.

- redhat

THANK YOU

Appendix: vhost-scsi

I/0 requests on the virtio queue are
/ handled by host kernel vhost LIO
////// target.
////,/j

Data path is efficient: no ctx switch
to userspace is needed (I0OThread is
out of data path). Backend
configuration with LIO is relatively
flexible.

7

Not widely used. No migration
support. No QEMU block layer
features.

38

Appendix: QEMU SCSI pass-

through

IOThread

reg

worker
thread

I(fd, SG_

SCSI commands are passed from
guest SCSI subsystem (or
userspace SG_10) to device.

Convenient to expose host device’s
SCSI functions to guest.

No asynchronous SG IO interface
available. aio=native has no effect.

Q. redhat

39

Appendix: NUMA - Libvirt xml|
syntax (1)

vCPU pinning:
<VvCpu cpuset='0-7'>8</vcpu>
<cputune>
<vcpupin vcpu='0' cpuset='0"/>
<vcpupin vcpu='l' cpuset='1"'/>
<vcpupin vcpu='2' cpuset="2"'/>
<vcpupin vcpu="'3' cpuset="'3"/>
<vcpupin vcpu='4' cpuset="'4"'/>
<vcpupin vcpu='5' cpuset='5"/>
<vcpupin vcpu='6' cpuset='6'/>
<vcpupin vcpu='7"' cpuset="7"'/>
</cputune>

Q. redhat.

40

Appendix: NUMA - Libvirt xml|
syntax (2)

Memory allocation policy
<numatune>
<memory mode='strict' nodeset="'0'>

</numatune>
<Cpu>

<numa>
<cell id="0" cpus="0-1" memory="3" unit="GiB"/>
<cell id="1" cpus="2-3" memory="3" unit="GIiB"/>
</numa>
</cpu>

Q. redhat.

Appendix: NUMA - Libvirt xml|
syntax (3)

« Pinning the whole emulator
<cputune>
<emulatorpin cpuset="1-3"/>
</cputune>

Q. redhat.

Appendix: NUMA - Libvirt xml|
syntax (4)

- Creating guest NUMA topology: Use pcie-expander-bus and
pcie-root-port to associate device to virtual NUMA node

<controller type='pci' index='3"' model="'pcie-expander-bus'>

<target busNr='180'>

<node>1l</node>

</target>

<address type="'pci' domain="'0x0000"' bus='0x00" slot='0x02'function="'0x0"'/>
</controller>
<controller type='pci' index="'6' model="'pcie-root-port'>

<model name='ioh3420'/>

<target chassis='6"' port='0x0'/>

<address type="'pci' domain="'0x0000"' bus='0x03" slot="'0x00' function="'0x0'/>
</controller>

42

Q. redhat.

