
Retrofitting Zephyr
Memory Protection

Wayne Ren, Sensor Software Engineer, Synopsys

Acknowledgements

These slides are based on Andrew Boie (Intel)’s

“Retrofitting Zephyr Memory Protection”

Thank you, Andrew!

CONTENTS

Background01

Design and Implementation in
Zephyr

02

ARC Specific Implementation 03

Future Work04

Background

What is Zephyr

• Zephyr: a modular RTOS and a complete solution stack
– RTOS for use on connected resource-constrained and embedded devices

– Focused on safety, security, connections with Bluetooth support and a full
native networking stack

– Apache 2.0 license, hosted at Linux Foundation

– Support diverse use cases and architectures: ARC, ARM, RISC-V, X86 …

– Web site: https://www.zephyrproject.org/

• More Zephyr related events:
– “Introduction to the Zephyr Project” - Ryan Qian, NXP & Kate Stewart, The

Linux Foundation, Tuesday, June 26 • 11:20 - 12:00

– “License Information Management ” – Kate Stewart, The Linux Foundation,
Tuesday, June 25 • 15:50 - 16:30

– IoT Meetup, Tuesday, June 26 • 18:00 - 21:00, 北京海淀区科学院南路2号,
融科资讯中心C座南楼1层南极洲会议室

https://www.zephyrproject.org/

Why Required

• Security concern of IoT devices
– More and more “things” are connected, traditionally offline->online

• Secure communication
• Trusted execution (secure boot)
• Data protection
• ….

• Zephyr uses systematic approaches for security
– Static: high quality design, code review, tests, certification
– Dynamic: secure communication, cryptography, memory

protection

• Memory protection
– One important approach for more secure, reliable and safe system
– 1st step to implement security

Memory Protection Hardware

Memory Protection Unit(MPU) Memory Management Unit(MMU)

• Popular in low-end device, ARM Cortex M4, ARC

EM

• Popular in Application processors, x86, ARM Cortex

A series, ARC HS series

• Fixed number of configurable regions, each with

their own access policy

• Address space divided into equal sized pages

(typically 4K).

• No virtualization, physical memory addresses • Configuration for caching and access, policy for

each page set in page tables

• Typically have constraints on region specification,

e.g. region sizes must be power of two, aligned to

their size

• MPU-like behavior with identity page table, but

Optional support for virtual memory

Memory Protection in Zephyr

• Zephyr had no means of preventing unwanted memory access before

• Joint effort with most contributions from Linaro (ARM), Synopsys (ARC),
and Intel (x86), initial efforts targeting MPU-based systems

• Milestones
– 1.9 release (7/2017): MMU/MPU enabled, stack overflow protection on ARM/x86

– 1.10 release (11/2017): user mode support on x86 MMU

– 1.11 release (3/2018): user mode support on ARC/ARM MPU

– 1.12 release (6/2018): more tests, refinement

• Future work
– Additional CPU architecture support

– Flesh out APIs and iterative refinement

– Support of TEE (Trusted Execution Environment), e.g., secure and non-secure world
(1.13 or later)

Use Cases

• Protect against unintentional programming errors
– Stack overflows

– Writing to bad memory

– Data corruption

• Sandbox complex data parsers and interpreters
– Network stacks/protocols

– File systems

– Reduce likelihood of third-party data compromising the system

• Support the notion of multiple logical isolated
applications

Comparison with Other RTOSes

• FreeRTOS-MPU
• not default configuration of

FreeRTOS
• Unprivileged "User" threads with

configurable memory access, system
calls for privileged operations

• Not well maintained, often doesn't
compile

• NuttX Protected Build
• Supports ARM MPU and MMU (with

identity page table)
• Unprivileged threads similar to

FreeRTOS-MPU
• Separately loaded applications
• Many features proposed but still

WIP

• ThreadX Modules
• MPU or MMU Virtualized address

spaces for separately loaded
modules with thread-level memory
protection features

• Support for lots of different CPUs
• Not free. Royalty-free license with

significant upfront cost, modules
feature costs extra

• Zephyr
• Thread-level protection
• Support for lost of different CPUS
• Same kernel & driver APIs for kernel

and user mode threads
• Free, Apache 2.0 License
• More features in the future

Design and
Implementation
in Zephyr

Threat Model

• User thread
– Untrusted
– Isolated from the kernel and each other

• Kernel thread and kernel
– Trusted, privilege to access all

• A flawed or malicious user thread
cannot:

– Leak or modify private data of another
thread unless specifically granted
permission

– Interfere with or control another thread
except through designed thread
communication APIs (pipes, semaphores,
etc.)

Zephyr Kernel

thread 4

thread 1 thread 2

MPU hardware separation

CPU mode separation

thread 5 thread 6

User
threads

Kernel
threads

Unprivileged/User

Privileged/Kernel

thread 3

User Mode

• Control access to kernel objects and device drivers
– Per-object and per-thread basis

• Maintain compatibility with existing Zephyr APIs

• Implement system calls for privilege elevation

• Arch-specific code to enter user mode

• Validate system call parameters including kernel object
pointers

• Do not require changes to individual drivers

• Manage user mode access to memory

High-Level Policy

• User threads are by default granted only
– Read/write access to their own stack memory and application memory

– Read-only/execute access to program text and ROM

– Memory domain APIs to configure access to additional regions with
child thread inheritance

• User threads cannot use device drivers or kernel objects
without being granted permission

– Permission granted by other threads with sufficient permission or
inherited

• System call API parameters are rigorously checked

• User mode stack overflows are safely caught

Permission Model

• Each kernel object has a bitfield indicating
what user threads have access to it

• Kernel threads can grant object access to
any user thread

• User threads may grant object access to
another user thread if the calling thread has
permissions on both the object and the
target user thread

• Newly created user threads may optionally
inherit object permissions of the parent
thread.

Kernel object

0 1 1 0 0 1 1 0 0

Thread

Thread

Thread

Kernel Object

• Three main types of kernel-private data structures
– Kernel API data structures - k_thread, k_sem, k_mutex, k_pipe, etc.

– All device driver instances

– All thread stacks, instead of individual structs, these are arrays of a
special typedef to character data

• To preserve Zephyr API compatibility, all are
referenced by memory address

– Act as a handle for user threads, object memory not accessible

– Need a system for validating object pointers passed to system calls

Kernel Object Permissions

• Kernel threads can access all objects
– Permissions still tracked, because

• Thread drops to user mode

• Creates child user threads with object permission inheritance
enabled

– May designate some objects as "public" and usable by all threads

• User threads
– If created with permission inheritance, gain access to all parent

thread's permissions except parent thread object

– k_object_access_grant() calls must have permission on both the
target thread and the object being granted permission to

Kernel Object: New Type

• Creating new kernel object types is easy!
– Add the name of the associated data structure to the build

• Struct name itself for new kernel APIs

• API struct name for new device driver subsystem types

– Small modifications to some lists in two C files

• Could eventually be automated

• Recognizing instances of kernel objects and providing
a validation function for them is all handled
automatically at build time

Kernel Object: Constraints

• Must be declared as a top-level global
– Needs to appear in the kernel's ELF symbol table
– OK to declare with static scope
– May be embedded as members of larger data structures

• Memory for an object must be exclusive to that object
– Can't be part of a union data type

• Must be in the kernel data section

• Objects that do not meet these constraints will not be
accessible from user mode

• Future work: support runtime allocation use-cases from
slabs/kernel heap

Kernel Object: Definition

• perms: permission bitfield
indicating thread permissions
for that object

• type: object type information
enum, K_OBJ_THREAD,
K_OBJ_UART_DRIVER, ...

• flags: initialization state,
public/private, others as needed

• data: extra data in some cases
– Stack object size
– Build-time assigned thread ID

struct _k_object {
char *name;
u8_t

perms[CONFIG_MAX_THREAD_BYTES];
u8_t type;
u8_t flags;
u32_t data;

}

extern struct _k_object *
_k_object_find(void *obj);

How to Get Kernel Object Info?

• Problem: need to find all the kernel objects
– Map object memory addresses to instantiations of struct _k_object

containing metadata

– Validate kernel object pointers passed in from user thread

• Solution:
– gen_kobject_list.py

• Use pyelftools to unpack ELF binary and fetches all the DWARF
debug information, and does object identification

– gperf

• a GNU tool for creating perfect hash tables

• Generate the hash table of kernel objects for efficiency

Kernel Object: Flow

zephyr pre-built.elf
(1st build)

gen_kobject_list.py kobject_hash.gperf
gperf tool kobject_hash_prep

rocess.c

preprocess
tool

kobject_hash.c2nd build
zephyr.elf

System Call

• Typical OS mechanism for allowing user
threads to perform operations they can’t
do

• On all arches, API ID and parameters are
marshaled into registers and a software
interrupt/exception is triggered

– Up to six registers used; additional args passed in via
struct and stack

• Common landing site for system calls on
kernel side

– Validate API ID, execute the handler function
– Clean general purpose registers on exit to prevent

private data leakage

• Use build-time logic to make adding new
system calls as painless as possible

User threads

System call wrapper

call checker

Zephyr Kernel

clean up

User mode

Kernel mode

SW irq/exception irq/exception return

System Call: Components

• Very easy for developers to define

• Created by developer for each system call:
– System call header prototype __syscall void k_sleep(s32_t duration)
– Handler function for argument validation Z_SYSCALL_HANDLER(k_sleep, duration)

• Verify caller permissions on provided memory buffers or data passed via pointer
• Copy any parameter data passed in via pointer to local memory
• Verify object pointers, permission, initialization state
• Verify parameter values which are otherwise left to assertions or simply un-checked

– Implementation function void _impl_k_sleep(s32_t duration)
• Kernel object API code under kernel/
• Driver subsystem API functions defined at the subsystem level

• Auto-generated for each system call:
– System call ID enumerated type
– Handler function prototypes
– _k_syscall_table entry mapping ID to handler function
– __weak handler function for system calls excluded from kernel config
– System call invocation function

System Call: Flow

API Call
User

Mode
?

Marshal
args, Trigger

SW IRQ

Valid
call
ID?

Lookup handler in
dispatch table

k_oops()

Handler
Checks

Implementation
Function

Marshal Return
Value, exit IRQ

Return to
Caller

k_oops()

Y

N

N

Y

Y

N

System Call: Build-Time Magic

• Limited parsing of kernel header files, looking for function
prototypes prefixed with "__syscall“

• Parsing limited to determining return value and argument
types to generate additional functions

– Some minor limitations in parsing with array/function pointer argument types
which can be easily worked around

• Generated headers contains implementation of API as an
inline function - invokes system call trap or direct call to
implementation as appropriate

• Some generated C code for default handler and dispatch
table entry

Memory Domain

• User threads by default can't look at any RAM except their own
stacks

• Need a flexible way to designate additional memory areas that a
thread has access to

• Limited number of total MPU regions needs to be taken into
consideration

• Grant access to top-level data or BSS section globals defined and
used by the thread, or application data that needs to be shared
between threads

• Memory Domain APIs exist to handle re-programming the MPU for
the incoming thread's memory access policy on context switch

Memory Domain: Implementation

• Memory domain APIs are kernel-access only, no
system calls

• Implemented as an object struct k_mem_domain
– Contains some number of memory partitions (struct

k_mem_partition)
• Up to the maximum number of regions supported by MPU

hardware, no limit for MMU
• Each partition is a starting address, size, and access policy
• Hardware dictates alignment and size constraints

– APIs to add/remove partitions to an initialized memory domain
object

• Any thread may be added/removed to a particular
memory domain to implement an access policy for
that thread

• MPU region registers or MMU page tables updated
upon context switch to activate policy for incoming
thread

• Special Case: Application Memory
– Shared to all threads, CONFIG_APPLICATION_MEMORY in Kconfig
– All top level globals in non-kernel object files (libs, application code)

placed in user read/writable section by linker and access policy
configured in MMU/MPU at boot

• Facilities for grouping data by the linker (WIP)

mem_domain 0

mem partition 0

mem partition n

mem_domain 1

mem partition 0

mem partition n

ARC Specific
Implementation

Introduction of ARC

• Optimized for ultra low power IoT

• 3-stage pipeline w/ high efficiency DSP

• Power as low as 3uW/ MHz

• Area as small as 0.01mm2 in 28HPM

• Well supported in Zephyr

• Highest performance ARC cores to date

• High speed 10- stage pipeline

• SMP Linux support

• Single, dual, quad core configurations

• Support in Zephyr: in progress

EM Family HS Family

ARC EM Starter Kit ARC HS Development Kit

ARC EM Starter Kit

ARC Support in Zephyr

• ARC in Zephyr
– <zephyr root>/arch/arc
– Board:

• ARC EM Starter Kit
• Arduino 101 sensor subsystem
• Quark_se based board

• Processor:
– User/kernel mode
– Stack overflow check
– DSP, fast IRQ
– SecureShield

• MPU:
– em_starterkit_em7d_v22 (emsk 2.2

firmware)
• MPUv2, power of 2, >2048 bytes

– em_starterkit_em7d (emsk 2.3
firmware)

• MPUv3, 32 bytes aligned, no
overlapping

• FPGA-based board
• 128 MB DDR3 RAM + PMOD

interfaces
• Fmax 20-25 MHz
• Supports all ARC EM

Processors:
• em7d, em9d, em11d

• Usage: Early protyping

Layered Approach

• Zephyr "processes" in their own VM

• Demanding Pages

• Implementation in progress

L4: Virtual Memory

• In kernel mode

• Detection of Stack overflow errors

L2: Stack Overflow detection

• User threads running in un-privileged

mode

• System calls

• Stack & memory isolation

• Thread-level kernel object/driver

permissions and memory policy

L3: User thread

• Config MMU/MPU

• No-execute for non-text

• NULL pointer dereferences

• exceptions for nonsense address

L1: Boot-time

RAM

Memory Map

• Correct memory map is the
foundation of memory protection

• Static MPU entries
– Boot time memory configuration

– ROM: 1 MPU entry, RO+EXE

– RAM(kernel): 1 MPU entry, kernel RW

– RAM(application memory): 1 mpu entry，
User RW

– Peripheral area: 1 mpu entry, kernel RW

• Dynamic MPU entries
– Thread stack

– Memory domain

ROM

Zephyr application
(Read + Execute)

Application Memory

Memory Domain 0

Memory Domain 1

Kernel

Kernel objects, variables

Thread stack 0

Thread stack 1

Peripheral Area

Thread Stack

• Kernel thread
– Merge the privilege stack into

thread stack for more stack
space

• User thread
– 1 MPU entry for user stack

• Stack overflow protection
– STACK_CHECKING(optional)

• both for user stack and
privilege stack

– MPU based: stack guard page

Kernel thread stack

stack guard(optional)

declared stack

privilege stack
initial stack pointer

K_THREAD_STACK_BUFFER()

K_THREAD_STACK_DEFINE

usable stack size

User thread stack

stack guard(optional)

declared stack

privilege stack

initial stack pointer

K_THREAD_STACK_BUFFER()
Address alignment

usable stack size

Address alignment

Future work

Runtime Kernel Object Allocation

• Not always possible to define all kernel objects used
at build time

– Build-time constraints prevent allocation of kernel objects in
separately loaded application code at all

• Two approaches, both under implementation
– Build-time defined slab pools of kernel objects

• Pools are build-defined arrays of various objects and validated
as normal

– Kernel-side heap allocation of kernel objects

• Supplemental runtime hash table for tracking validity of new
objects

• User mode no direct access to this heap!

Kernel API Improvements

• Not all kernel APIs exposed as system calls
– Many combine user and private kernel data in ways which could be

attacked
– k_mem_pool, k_poll, k_queue

• Need some better heap features
– k_mem_pool APIs were designed to be ISR-safe and not usable from user

mode
– newlib heap is just a singleton for entire address space since no VM

• Need a k_mem_pool equivalent that runs entirely in user
mode, using memory domains to control access

• User-mode work queues
– k_work_q threads currently run in kernel mode using k_queue for data

buffering

Memory Organization Features

• "Application Memory" feature was useful for getting
test cases up but does not work well for real-world
uses

• Need a solution which handles both setting up 1..N
memory areas for applications

– Configure memory domains

– Tie into linker scripts to ensure the data gets where it needs to be

– Handle alignment constraints

• No design for this yet, under discussion

TEE & Secure Mode Support

• Zephyr
– High-level design on discussion
– Arch specific work starts

• ARM
– Hardware: Trustzone-M, Cortex

M23/33
– Software: PR #6766, #6748,

#4985 …

• ARC
– Hardware: SecureShield, em7d of

emsk 2.3
– Software: WIP

So
ft

w
ar

e
H

ar
d

w
ar

e

SoC

Secure
World: TEE

Trusted Apps

OS/Firmware

Security Software

Normal
World

Non-trusted
Apps

Security Resources

CPU

OS/Firmware

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi-kqW_7NfKAhVV7mMKHdVhC5YQjRwIBw&url=http://graphiccave.com/project/lock-unlock-icon-vector-and-png-free-download/&psig=AFQjCNEZdUjSAtoC7uvimZ9ErEWuBHewzg&ust=1454460163613744

Call To Action

• Want to learn more? Have some
ideas? Get started here:

– https://www.zephyrproject.org/

• Check out codebase on GitHub:
– https://github.com/zephyrproject-rtos/zephyr

• Join our mailing list or hang out in our
IRC channel (WeChat, etc)

• Join weekly on-line meetings, TSC
meeting, secure, network, ….

https://www.zephyrproject.org/
https://github.com/zephyrproject-rtos/zephyr

