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Background



What is Zephyr

• Zephyr: a modular RTOS and a complete solution stack
– RTOS for use on connected resource-constrained and embedded devices

– Focused on safety, security, connections with Bluetooth support and  a full 
native networking stack

– Apache 2.0 license, hosted at Linux Foundation

– Support diverse use cases and architectures: ARC, ARM, RISC-V, X86 …

– Web site: https://www.zephyrproject.org/

• More Zephyr related events:
– “Introduction to the Zephyr Project” - Ryan Qian, NXP & Kate Stewart, The 

Linux Foundation, Tuesday, June 26 • 11:20 - 12:00

– “License Information Management ” – Kate Stewart, The Linux Foundation, 
Tuesday, June 25 • 15:50 - 16:30

– IoT Meetup, Tuesday, June 26 • 18:00 - 21:00, 北京海淀区科学院南路2号, 
融科资讯中心C座南楼1层南极洲会议室

https://www.zephyrproject.org/


Why Required

• Security concern of IoT devices
– More and more “things” are connected, traditionally offline->online

• Secure communication
• Trusted execution (secure boot)
• Data protection
• ….

• Zephyr uses systematic approaches for security
– Static: high quality design, code review, tests, certification
– Dynamic: secure communication, cryptography,  memory 

protection

• Memory protection
– One important approach for more secure, reliable and safe system
– 1st step to implement security 



Memory Protection Hardware

Memory Protection Unit(MPU) Memory Management Unit(MMU)

• Popular in low-end device, ARM Cortex M4, ARC 

EM

• Popular in Application processors, x86, ARM Cortex 

A series, ARC HS series

• Fixed number of configurable regions, each with 

their own access policy

• Address space divided into equal sized pages 

(typically 4K).

• No virtualization, physical memory addresses • Configuration for caching and access, policy for 

each page set in page tables

• Typically have constraints on region specification, 

e.g. region sizes must be power of two, aligned to 

their size

• MPU-like behavior with identity page table, but 

Optional support for virtual memory



Memory Protection in Zephyr

• Zephyr had no means of preventing unwanted memory access before

• Joint effort with most contributions from Linaro (ARM), Synopsys (ARC), 
and Intel (x86), initial efforts targeting MPU-based systems

• Milestones
– 1.9 release (7/2017): MMU/MPU enabled, stack overflow protection on ARM/x86

– 1.10 release (11/2017): user mode support on x86 MMU

– 1.11 release (3/2018): user mode support on ARC/ARM MPU

– 1.12 release (6/2018): more tests, refinement

• Future work
– Additional CPU architecture support

– Flesh out APIs and iterative refinement

– Support of  TEE (Trusted Execution Environment), e.g., secure and non-secure world 
(1.13 or later) 



Use Cases

• Protect against unintentional programming errors
– Stack overflows

– Writing to bad memory

– Data corruption

• Sandbox complex data parsers and interpreters
– Network stacks/protocols

– File systems

– Reduce likelihood of third-party data compromising the system

• Support the notion of multiple logical isolated 
applications



Comparison with Other RTOSes

• FreeRTOS-MPU
• not default configuration of 

FreeRTOS
• Unprivileged "User" threads with 

configurable memory access, system 
calls for privileged operations

• Not well maintained, often doesn't 
compile

• NuttX Protected Build
• Supports ARM MPU and MMU (with 

identity page table)
• Unprivileged threads similar to 

FreeRTOS-MPU
• Separately loaded applications
• Many features proposed but still 

WIP

• ThreadX Modules
• MPU or MMU Virtualized address 

spaces for separately loaded 
modules with thread-level memory 
protection features

• Support for lots of different CPUs
• Not free. Royalty-free license with 

significant upfront cost, modules 
feature costs extra

• Zephyr
• Thread-level protection 
• Support for lost of different CPUS
• Same kernel & driver APIs for kernel 

and user mode threads
• Free, Apache 2.0 License
• More features in the future



Design and 
Implementation 
in Zephyr 



Threat Model

• User thread
– Untrusted
– Isolated from the kernel and each other

• Kernel thread and kernel
– Trusted, privilege to access all

• A flawed or malicious user thread 
cannot:

– Leak or modify private data of another 
thread unless specifically granted 
permission

– Interfere with or control another thread 
except through designed thread 
communication APIs (pipes, semaphores, 
etc.)

Zephyr Kernel

thread 4

thread 1 thread 2

MPU hardware separation

CPU mode separation

thread 5 thread 6

User 
threads

Kernel 
threads

Unprivileged/User

Privileged/Kernel

thread 3



User Mode

• Control access to kernel objects and device drivers
– Per-object and per-thread basis

• Maintain compatibility with existing Zephyr APIs

• Implement system calls for privilege elevation

• Arch-specific code to enter user mode

• Validate system call parameters including kernel object 
pointers

• Do not require changes to individual drivers

• Manage user mode access to memory



High-Level Policy

• User threads are by default granted only
– Read/write access to their own stack memory and application memory

– Read-only/execute access to program text and ROM

– Memory domain APIs to configure access to additional regions with 
child thread inheritance

• User threads cannot use device drivers or kernel objects 
without being granted permission

– Permission granted by other threads with sufficient permission or 
inherited

• System call API parameters are rigorously checked

• User mode stack overflows are safely caught



Permission Model

• Each kernel object has a bitfield indicating 
what user threads have access to it

• Kernel threads can grant object access to 
any user thread

• User threads may grant object access to 
another user thread if the calling thread has 
permissions on both the object and the 
target user thread

• Newly created user threads may optionally 
inherit object permissions of the parent 
thread.

Kernel object

0 1 1 0 0 1 1 0 0

Thread

Thread

Thread



Kernel Object

• Three main types of kernel-private data structures
– Kernel API data structures - k_thread, k_sem, k_mutex, k_pipe, etc.

– All device driver instances

– All thread stacks, instead of individual structs, these are arrays of a 
special typedef to character data

• To preserve Zephyr API compatibility, all are 
referenced by memory address

– Act as a handle for user threads, object memory not accessible

– Need a system for validating object pointers passed to system calls



Kernel Object Permissions

• Kernel threads can access all objects
– Permissions still tracked, because

• Thread drops to user mode

• Creates child user threads with object permission inheritance 
enabled

– May designate some objects as "public" and usable by all threads

• User threads
– If created with permission inheritance, gain access to all parent 

thread's permissions except parent thread object

– k_object_access_grant() calls must have permission on both the 
target thread and the object being granted permission to



Kernel Object: New Type

• Creating new kernel object types is easy!
– Add the name of the associated data structure to the build

• Struct name itself for new kernel APIs

• API struct name for new device driver subsystem types

– Small modifications to some lists in two C files

• Could eventually be automated

• Recognizing instances of kernel objects and providing 
a validation function for them is all handled 
automatically at build time



Kernel Object: Constraints

• Must be declared as a top-level global
– Needs to appear in the kernel's ELF symbol table
– OK to declare with static scope
– May be embedded as members of larger data structures

• Memory for an object must be exclusive to that object
– Can't be part of a union data type

• Must be in the kernel data section

• Objects that do not meet these constraints will not be 
accessible from user mode

• Future work: support runtime allocation use-cases from 
slabs/kernel heap



Kernel Object: Definition

• perms: permission bitfield 
indicating thread permissions 
for that object

• type: object type information 
enum, K_OBJ_THREAD,  
K_OBJ_UART_DRIVER, ...

• flags: initialization state, 
public/private, others as needed

• data: extra data in some cases
– Stack object size
– Build-time assigned thread ID

struct _k_object {
char *name;
u8_t 

perms[CONFIG_MAX_THREAD_BYTES];
u8_t type;
u8_t flags;
u32_t data;

}

extern struct _k_object *
_k_object_find(void *obj);



How to Get Kernel Object Info?

• Problem: need to find all the kernel objects
– Map object memory addresses to instantiations of struct _k_object

containing metadata

– Validate kernel object pointers passed in from user thread

• Solution:
– gen_kobject_list.py

• Use pyelftools to unpack ELF binary and fetches all the DWARF 
debug information, and does object identification

– gperf

• a GNU tool for creating perfect hash tables

• Generate the hash table of kernel objects for efficiency



Kernel Object: Flow

zephyr pre-built.elf
(1st build)

gen_kobject_list.py kobject_hash.gperf
gperf tool kobject_hash_prep

rocess.c

preprocess 
tool

kobject_hash.c2nd build
zephyr.elf



System Call

• Typical OS mechanism for allowing user  
threads to perform operations they can’t 
do

• On all arches, API ID and parameters are 
marshaled into registers and a software 
interrupt/exception is triggered

– Up to six registers used; additional args passed in via 
struct and stack

• Common landing site for system calls on 
kernel side

– Validate API ID, execute the handler function
– Clean general purpose registers on exit to prevent 

private data leakage

• Use build-time logic to make adding new 
system calls as painless as possible

User threads

System call wrapper

call checker

Zephyr Kernel

clean up

User mode

Kernel mode

SW irq/exception irq/exception return



System Call: Components

• Very easy for developers to define

• Created by developer for each system call:
– System call header prototype __syscall void k_sleep(s32_t duration)
– Handler function for argument validation Z_SYSCALL_HANDLER(k_sleep, duration)

• Verify caller permissions on provided memory buffers or data passed via pointer
• Copy any parameter data passed in via pointer to local memory
• Verify object pointers, permission, initialization state
• Verify parameter values which are otherwise left to assertions or simply un-checked

– Implementation function void _impl_k_sleep(s32_t duration)
• Kernel object API code under kernel/
• Driver subsystem API functions defined at the subsystem level

• Auto-generated for each system call:
– System call ID enumerated type
– Handler function prototypes
– _k_syscall_table entry mapping ID to handler function
– __weak handler function for system calls excluded from kernel config
– System call invocation function



System Call: Flow

API Call
User 

Mode 
?

Marshal 
args, Trigger 

SW IRQ

Valid 
call 
ID?

Lookup handler in 
dispatch table

k_oops()

Handler 
Checks

Implementation 
Function

Marshal Return 
Value, exit IRQ

Return to 
Caller

k_oops()

Y

N

N

Y

Y

N



System Call: Build-Time Magic

• Limited parsing of kernel header files, looking for function 
prototypes prefixed with "__syscall“

• Parsing limited to determining return value and argument 
types to generate additional functions

– Some minor limitations in parsing with array/function pointer argument types 
which can be easily worked around

• Generated headers contains implementation of API as an 
inline function - invokes system call trap or direct call to 
implementation as appropriate

• Some generated C code for default handler and dispatch 
table entry



Memory Domain

• User threads by default can't look at any RAM except their own 
stacks

• Need a flexible way to designate additional memory areas that a 
thread has access to

• Limited number of total MPU regions needs to be taken into 
consideration

• Grant access to top-level data or BSS section globals defined and 
used by the thread, or application data that needs to be shared 
between threads

• Memory Domain APIs exist to handle re-programming the MPU for 
the incoming thread's memory access policy on context switch



Memory Domain: Implementation

• Memory domain APIs are kernel-access only, no 
system calls

• Implemented as an object struct k_mem_domain
– Contains some number of memory partitions (struct 

k_mem_partition)
• Up to the maximum number of regions supported by MPU 

hardware, no limit for MMU
• Each partition is a starting address, size, and access policy
• Hardware dictates alignment and size constraints

– APIs to add/remove partitions to an initialized memory domain 
object

• Any thread may be added/removed to a particular 
memory domain to implement an access policy for 
that thread

• MPU region registers or MMU page tables updated 
upon context switch to activate policy for incoming 
thread

• Special Case: Application Memory
– Shared to all threads, CONFIG_APPLICATION_MEMORY in Kconfig
– All top level globals in non-kernel object files (libs, application code) 

placed in user read/writable section by linker and access policy 
configured in MMU/MPU at boot

• Facilities for grouping data by the linker (WIP)

mem_domain 0

mem partition 0

mem partition n

mem_domain 1

mem partition 0

mem partition n



ARC Specific 
Implementation



Introduction of ARC

• Optimized for ultra low power IoT 

• 3-stage pipeline w/ high efficiency DSP 

• Power as low as 3uW/ MHz

• Area as small as 0.01mm2 in 28HPM

• Well supported in Zephyr

• Highest performance ARC cores to date

• High speed 10- stage pipeline

• SMP Linux support

• Single, dual, quad core configurations

• Support in Zephyr: in progress

EM Family HS Family 

ARC EM Starter Kit ARC HS Development Kit



ARC EM Starter Kit

ARC Support in Zephyr

• ARC in Zephyr
– <zephyr root>/arch/arc
– Board:

• ARC EM Starter Kit
• Arduino 101 sensor subsystem
• Quark_se based board

• Processor:
– User/kernel mode
– Stack overflow check
– DSP, fast IRQ
– SecureShield

• MPU:
– em_starterkit_em7d_v22 (emsk 2.2 

firmware)
• MPUv2, power of 2, >2048 bytes

– em_starterkit_em7d (emsk 2.3 
firmware)

• MPUv3, 32 bytes aligned, no 
overlapping

• FPGA-based board
• 128 MB DDR3 RAM + PMOD 

interfaces 
• Fmax 20-25 MHz
• Supports all ARC EM 

Processors:
• em7d, em9d, em11d

• Usage: Early protyping



Layered Approach

• Zephyr "processes" in their own VM

• Demanding Pages

• Implementation in progress

L4: Virtual Memory

• In kernel mode

• Detection of Stack overflow errors

L2: Stack Overflow detection

• User threads running in un-privileged 

mode

• System calls

• Stack & memory isolation

• Thread-level kernel object/driver 

permissions and memory policy

L3: User thread

• Config MMU/MPU

• No-execute for non-text

• NULL pointer dereferences

• exceptions for nonsense address

L1: Boot-time



RAM

Memory Map

• Correct memory map is the 
foundation of memory protection

• Static MPU entries
– Boot time memory configuration

– ROM: 1 MPU entry, RO+EXE

– RAM(kernel): 1 MPU entry, kernel RW

– RAM(application memory): 1 mpu entry，
User RW

– Peripheral area: 1 mpu entry, kernel RW

• Dynamic MPU entries
– Thread stack

– Memory domain

ROM

Zephyr application
(Read + Execute)

Application Memory

Memory Domain 0

Memory Domain 1

Kernel

Kernel objects, variables

Thread stack 0

Thread stack 1

Peripheral Area



Thread Stack

• Kernel thread 
– Merge the privilege stack into 

thread stack for more stack 
space

• User thread
– 1 MPU entry for user stack

• Stack overflow protection
– STACK_CHECKING(optional)

• both for user stack and 
privilege stack

– MPU based: stack guard page

Kernel thread stack

stack guard(optional)

declared stack

privilege stack
initial stack pointer

K_THREAD_STACK_BUFFER()

K_THREAD_STACK_DEFINE

usable stack size

User thread stack

stack guard(optional)

declared stack

privilege stack

initial stack pointer

K_THREAD_STACK_BUFFER()
Address alignment

usable stack size

Address alignment



Future work



Runtime Kernel Object Allocation

• Not always possible to define all kernel objects used 
at build time

– Build-time constraints prevent allocation of kernel objects in 
separately loaded application code at all

• Two approaches, both under implementation
– Build-time defined slab pools of kernel objects

• Pools are build-defined arrays of various objects and validated 
as normal

– Kernel-side heap allocation of kernel objects

• Supplemental runtime hash table for tracking validity of new 
objects

• User mode no direct access to this heap!



Kernel API Improvements

• Not all kernel APIs exposed as system calls
– Many combine user and private kernel data in ways which could be 

attacked
– k_mem_pool, k_poll, k_queue

• Need some better heap features
– k_mem_pool APIs were designed to be ISR-safe and not usable from user 

mode
– newlib heap is just a singleton for entire address space since no VM

• Need a k_mem_pool equivalent that runs entirely in user 
mode, using memory domains to control access

• User-mode work queues
– k_work_q threads currently run in kernel mode using k_queue for data 

buffering



Memory Organization Features

• "Application Memory" feature was useful for getting 
test cases up but does not work well for real-world 
uses

• Need a solution which handles both setting up 1..N 
memory areas for applications

– Configure memory domains

– Tie into linker scripts to ensure the data gets where it needs to be

– Handle alignment constraints

• No design for this yet, under discussion



TEE & Secure Mode Support

• Zephyr
– High-level design on discussion
– Arch specific work starts

• ARM
– Hardware: Trustzone-M, Cortex 

M23/33
– Software: PR #6766, #6748, 

#4985 …

• ARC
– Hardware: SecureShield, em7d of 

emsk 2.3
– Software: WIP
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Call To Action

• Want to learn more? Have some 
ideas? Get started here:

– https://www.zephyrproject.org/

• Check out codebase on GitHub:
– https://github.com/zephyrproject-rtos/zephyr

• Join our mailing list or hang out in our 
IRC channel (WeChat, etc)

• Join weekly on-line meetings, TSC 
meeting, secure, network, ….

https://www.zephyrproject.org/
https://github.com/zephyrproject-rtos/zephyr



