
Convergence of  VM and 
containers orchestration using 

KubeVirt

Chunfu Wen
chwen@redhat.com



INSERT DESIGNATOR, IF NEEDED

Agenda

● Context  Introduction
● What Is Kubevirt And How It Feel
● Kubevirt Architecture And Design
● Demo

# LC3



INSERT DESIGNATOR, IF NEEDED

FIRST A  LITTLE  HISTORY

# LC3

Virtual Machines



INSERT DESIGNATOR, IF NEEDED# LC3

Virtual Machines Containers

A

FIRST A  LITTLE  HISTORY



Virtualization VS Containers

VM virtualizes the hardware container isolates the process

VS



INSERT DESIGNATOR, IF NEEDED

VIRTUAL MACHINES VS CONTAINERS

#LC3

Each of these attributes can be a positive or a negative for a given workload.

Increasingly organizations have a mix of both.

Virtual Machine

Application

Bins/Libs

Guest OS

Container

Application

Bins/Libs

Container Host



INSERT DESIGNATOR, IF NEEDED

EXISTING SYSTEMS TREAT THESE SEPARATELY

# LC3

Virtual Machine

RHEL

Physical Machine

Virtual Machine

RHEL

Physical Machine

Container

Container

RHEL

Physical Machine



INSERT DESIGNATOR, IF NEEDED

WHAT ABOUT EXISTING WORKLOADS?

CONTAINER INFRASTRUCTURE AND ORCHESTRATION
Container Application and Kubernetes orchestration as provided by OpenShift are 
becoming the standard for new applications.

VIRTUALIZED WORKLOADS
Virtualized Workloads are not going anywhere fast! Business reasons (cost, 
time to market) and technical reasons (older/different operating system)

A

CONVERGING INFRASTRUCTURE
How can we bring these two worlds closer together?

# LC3



INSERT DESIGNATOR, IF NEEDED

So,if….
● VMS are just user processes

○ VM and containers already share some isolation technologies ,selinux 
and cgroup

● Kubernetes manage clustered containers,which are user processes
● Get a converged infrastructure

A

# LC3



INSERT DESIGNATOR, IF NEEDED

Concept of Proof

Container

Container

Pod

Virtual Machine

Replace

# LC3



INSERT DESIGNATOR, IF NEEDED

One Typical Benefit Scenario 

● Windows guest VM access containerized mysql
                 

Pod

Virtual Machine

Container

Service

MySql

# LC3



SERVICE CATALOG
(LANGUAGE RUNTIMES, MIDDLEWARE, DATABASES, …)

SELF-SERVICE

APPLICATION LIFECYCLE MANAGEMENT
(CI / CD)

BUILD AUTOMATION DEPLOYMENT AUTOMATION

CONTAINER CONTAINERCONTAINER CONTAINER CONTAINER

NETWORKING SECURITYSTORAGE REGISTRY
LOGS & 

METRICS

CONTAINER ORCHESTRATION & CLUSTER MANAGEMENT
(KUBERNETES)

ATOMIC HOST  /
RED HAT ENTERPRISE LINUX

OCI CONTAINER RUNTIME & PACKAGING

INFRASTRUCTURE AUTOMATION & COCKPIT

OpenShift = Enterprise K8s + Docker
Build, Deploy and Manage Containerized Apps

# LC3



INSERT DESIGNATOR, IF NEEDED

“Virtual Machine management addon to Kubernetes that 
extends Kubernetes in a way that allows it to schedule VM 

workloads side by side with container workloads.”

Enter kubevirt

Kubenest+Libvirt?

# LC3



INSERT DESIGNATOR, IF NEEDED

Explore more

● Extends OpenShift/Kubernetes to support orchestration of virtual 
machine workloads alongside application container workloads in the 
same cluster.

● Developer centric approach to virtualization that drops directly into 
existing Openshift/Kubernetes clusters 

○ Implemented as a CustomResouceDefinition
● Aims to provide as Kubernetes-native an experience to working with 

VMs As possible
○ Integrates directly with other Kubernetes concepts (like Persistent 

Volumes, Pod networking) 
○ Manager virtual machines like Pods! 

● Scheduling, networking, and storage are all delegated to Kubernetes, 
while KubeVirt provides the virtualization functionality

# LC3



INSERT DESIGNATOR, IF NEEDED

How Kubevirt Feel?

# LC3



INSERT DESIGNATOR, IF NEEDED

FIrst Look At Pod Object

kind: Pod
metadata:
  name: nginx
  labels:
    name: nginx
spec:
  containers:
  - name: nginx
    image: nginx:latest
    ports:
    - containerPort: 80
  nodeSelector:
    cpu: fast
status:
  phase: Running

What is a Pod?

“A pod (as in a pod of whales or pea pod) is a group of one 
or more containers (such as Docker containers), with 
shared storage/network, and a specification for how to run 
the containers.” *

 

* https://kubernetes.io/docs/concepts/workloads/pods/pod/#what-is-a-pod

# LC3



INSERT DESIGNATOR, IF NEEDED

kind: VirtualMachine
metadata:
  name: testvm
spec:
  domain:
    devices:
      type: 
PersistentVolumeClaim
      device: disk
      source:
        name: myVolumeClaim
  nodeSelector:
    cpu: fast
status:
  phase: Running

We have the typical Pod like structure:
● Metadata section
● Specification section
● Typical Pod features like

○ nodeSelector
○ affinity

● Status section

Behind the scene a Pod is created, scheduled  and we 
make sure that the VM starts correctly inside.

The VirtualMachine Object

# LC3



INSERT DESIGNATOR, IF NEEDED

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  creationTimestamp: null
  labels:

kubevirt.io: ""
  name: virtualmachines.kubevirt.io
spec:
  group: kubevirt.io
  names:

kind: VirtualMachine
plural: virtualmachines
shortNames:
- vm
- vms
singular: virtualmachine

  scope: Namespaced
  validation:

CustomResourceDefinition Extend 
the Kubernetes API:

● create a new 
CustomResourceDefinition (CRD), the 
Kubernetes API Server reacts by 
creating a new RESTful resource path

● After the CustomResourceDefinition 
object has been created, you can 
create custom objects. Custom objects 
can contain custom fields

CustomResourceDefinition:vm-resource.yaml

# LC3



INSERT DESIGNATOR, IF NEEDED

kind: VirtualMachine
metadata:
  name: testvm
spec:
  domain:
    devices:
      graphics:
      - type: spice
      consoles:
      - type: pty

      

Typical Pod commands:
● kubectl create -f mypodspec.yaml
● kubectl delete mypod
● kubectl exec mypod -it /bin/bash

Typical Virtual Machine commands:
● kubectl create -f myvmspec.yaml 
● kubectl delete testvm
● kubectl plugin virt console testvm
● kubectl plugin virt spice testvm

The Typical Kubectl Feeling

# LC3



INSERT DESIGNATOR, IF NEEDED

Architecture

# LC3



INSERT DESIGNATOR, IF NEEDED

Kubevirt Architecture Internal

# LC3



INSERT DESIGNATOR, IF NEEDED

Components(1/5)

virt-controller:

● This controller is responsible for monitoring the VM (CRDs) and 
managing the associated pods. Currently the controller will make 
sure to create and manage the life-cycle of the pods associated 
to the VM objects.

● A VM object will always be associated to a pod during it's 
life-time, however, due to i.e. migration of a VM the pod instance 
might change over time.

# LC3



INSERT DESIGNATOR, IF NEEDED

Components(2/5)

VM (CRD):

● Machine type
● CPU type
● Amount of RAM and vCPUs
● Number and type of NICs

# LC3



INSERT DESIGNATOR, IF NEEDED

Components(3/5)

virt-launcher:

● For every VM object one pod is created. This pod's primary container 
runs the virt-launcher KubeVirt component.

● Virt launcher  will take care to launch a VM process for every pod which 
is associated to a VM object whenever it is getting scheduled on a host.

● The main purpose of the virt-launcher Pod is to provide the cgroups and 
namespaces, which will be used to host the VM process.

● Virt-handler signals virt-launcher to start a VM by passing the VM's CRD 
object to virt-launcher. virt-launcher then uses a local libvirtd instance 
within its container to start the VM. From there virt-launcher monitors the 
VM process and terminates once the VM has exited.

# LC3



INSERT DESIGNATOR, IF NEEDED

Components(4/5)

LC3

virt-handler:

● Every host needs a single instance of virt-handler. It can be 
delivered as a DaemonSet.

● Virt-handler is also reactive and is watching for changes of the VM 
object, once detected it will perform all necessary operations to 
change a VM to meet the required state.

● Report domain state and spec changes to the cluster.

# LC3



INSERT DESIGNATOR, IF NEEDED

Components(5/5)

LC3

libvirtd:
● An instance of libvirtd is present in every VM pod. virt-launcher 

uses libvirtd to manage the life-cycle of the VM process..

# LC3



INSERT DESIGNATOR, IF NEEDED

DEMO

LC3# LC3

https://asciinema.org/a/0ljE1L2cw1tiIZuZLsiYsvwEP


INSERT DESIGNATOR, IF NEEDED

Deep dive into it

LC3# LC3



INSERT DESIGNATOR, IF NEEDED

Workflow: Create and Delete a VM

LC3# LC3



INSERT DESIGNATOR, IF NEEDED

Sequences 
● A client posts a new VM definition to the K8s API Server.
● The K8s API Server validates the input and creates a VM custom resource definition 

(CRD) object.
● The virt-controller observes the creation of the new VM object and creates a 

corresponding pod.
● Kubernetes is scheduling the pod on a host.
● The virt-controller observes that a pod for the VM got started and updates the 

nodeName field in VM object. After  the nodeName is set, the responsibility 
transitions to the virt-handler for any further action.

● The virt-handler observes that a VM got assigned to host where it is running on.
● The virt-handler is using the VM Specification and signals the creation of the 

corresponding domain using a libvirtd instance in the VM's pod.
● A client deletes the VM object through the virt-api-server.
● The virt-handler observes the deletion and turns off the domain.

LC3# LC3



INSERT DESIGNATOR, IF NEEDED

Leveraging K8s Functionality: network, storage 
and computing

# LC3



INSERT DESIGNATOR, IF NEEDED

Computing 

● Cores specify vcpu in VM
● Memory specify required 

memory

apiVersion: kubevirt.io/v1alpha1
kind: VirtualMachine
metadata:
  creationTimestamp: null
  name: vm-windows
spec:
  domain:
          ….

cpu:
  cores: 2

resources:
  requests:
    memory: 64M

# LC3



INSERT DESIGNATOR, IF NEEDED

Networking 

https://github.com/kubevirt/kubevirt/blob/master/docs/libvirt-pod-networking.md

LC3

func SetupDefaultPodNetwork(domain 
*api.Domain) error {
      ...
  reparePodNetworkInterfaces(vif, 
podNicLink);
  // Start DHCP Server
     ...
  go Handler.StartDHCP(vif, 
fakeServerAddr)
    ...
 }

● SetupDefaultPodNetwork will 
prepare the pod management 
network to be used by a virtual 
machine

●  Virtual machine will own the 
pod network IP and MAC. 

● Pods MAC address will be 
changed to a random address 
and IP will be deleted. 

● DHCP server will be started 
and bounded to the macvlan 
interface to server the original 
pod ip to the guest OS

# LC3



INSERT DESIGNATOR, IF NEEDED

Disk
● Virtual Machines are able 

to have disks attached. 
They are not always 
required, but have some 
value if you need to 
persist data.

● Kubernetes provides 
persistent storage through 
Persistent Volumes and 
Claims

apiVersion: kubevirt.io/v1alpha1
kind: VirtualMachine
   ...
  domain:
 ...

devices:
  disks:
  - disk:
      bus: virtio
    name: pvcdisk
    volumeName: pvcvolume

...
  volumes:
  - name: pvcvolume

persistentVolumeClaim:
  claimName: disk-vpc
  ...

# LC3



INSERT DESIGNATOR, IF NEEDED

Call for KubeVirt participants

● GitHub:
○ https://github.com/kubevirt/kubevirt
○ https://lc32018.sched.com/event/ERAW/convergence-of-vir

tual-machines-and-containers-orchestration-using-kubevirt-
chunfu-wen-red-hat?iframe=yes&w=100%&sidebar=yes&bg
=no#

● Mailing List:
○ https://groups.google.com/forum/#!forum/kubevirt-dev

● IRC:
○ #kubevirt on irc.freenode.net

# LC3

https://github.com/kubevirt/kubevirt
https://groups.google.com/forum/#!forum/kubevirt-dev


INSERT DESIGNATOR, IF NEEDED# LC3



THANK  YOU

Chunfu Wen-温春福
chwen@redhat.com


