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Virtual Machines
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Virtual Machines Containers
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Virtualization VS Containers

VM virtualizes the hardware container isolates the process

VS
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VIRTUAL MACHINES VS CONTAINERS
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Each of these attributes can be a positive or a negative for a given workload.

Increasingly organizations have a mix of both.
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EXISTING SYSTEMS TREAT THESE SEPARATELY
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WHAT ABOUT EXISTING WORKLOADS?

CONTAINER INFRASTRUCTURE AND ORCHESTRATION
Container Application and Kubernetes orchestration as provided by OpenShift are 
becoming the standard for new applications.

VIRTUALIZED WORKLOADS
Virtualized Workloads are not going anywhere fast! Business reasons (cost, 
time to market) and technical reasons (older/different operating system)

A

CONVERGING INFRASTRUCTURE
How can we bring these two worlds closer together?
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So,if….
● VMS are just user processes

○ VM and containers already share some isolation technologies ,selinux 
and cgroup

● Kubernetes manage clustered containers,which are user processes
● Get a converged infrastructure

A
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Concept of Proof

Container

Container

Pod

Virtual Machine

Replace

# LC3



INSERT DESIGNATOR, IF NEEDED

One Typical Benefit Scenario 

● Windows guest VM access containerized mysql
                 

Pod

Virtual Machine

Container

Service

MySql
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SERVICE CATALOG
(LANGUAGE RUNTIMES, MIDDLEWARE, DATABASES, …)

SELF-SERVICE

APPLICATION LIFECYCLE MANAGEMENT
(CI / CD)

BUILD AUTOMATION DEPLOYMENT AUTOMATION

CONTAINER CONTAINERCONTAINER CONTAINER CONTAINER

NETWORKING SECURITYSTORAGE REGISTRY
LOGS & 

METRICS

CONTAINER ORCHESTRATION & CLUSTER MANAGEMENT
(KUBERNETES)

ATOMIC HOST  /
RED HAT ENTERPRISE LINUX

OCI CONTAINER RUNTIME & PACKAGING

INFRASTRUCTURE AUTOMATION & COCKPIT

OpenShift = Enterprise K8s + Docker
Build, Deploy and Manage Containerized Apps
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“Virtual Machine management addon to Kubernetes that 
extends Kubernetes in a way that allows it to schedule VM 

workloads side by side with container workloads.”

Enter kubevirt

Kubenest+Libvirt?
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Explore more

● Extends OpenShift/Kubernetes to support orchestration of virtual 
machine workloads alongside application container workloads in the 
same cluster.

● Developer centric approach to virtualization that drops directly into 
existing Openshift/Kubernetes clusters 

○ Implemented as a CustomResouceDefinition
● Aims to provide as Kubernetes-native an experience to working with 

VMs As possible
○ Integrates directly with other Kubernetes concepts (like Persistent 

Volumes, Pod networking) 
○ Manager virtual machines like Pods! 

● Scheduling, networking, and storage are all delegated to Kubernetes, 
while KubeVirt provides the virtualization functionality
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How Kubevirt Feel?
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FIrst Look At Pod Object

kind: Pod
metadata:
  name: nginx
  labels:
    name: nginx
spec:
  containers:
  - name: nginx
    image: nginx:latest
    ports:
    - containerPort: 80
  nodeSelector:
    cpu: fast
status:
  phase: Running

What is a Pod?

“A pod (as in a pod of whales or pea pod) is a group of one 
or more containers (such as Docker containers), with 
shared storage/network, and a specification for how to run 
the containers.” *

 

* https://kubernetes.io/docs/concepts/workloads/pods/pod/#what-is-a-pod
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kind: VirtualMachine
metadata:
  name: testvm
spec:
  domain:
    devices:
      type: 
PersistentVolumeClaim
      device: disk
      source:
        name: myVolumeClaim
  nodeSelector:
    cpu: fast
status:
  phase: Running

We have the typical Pod like structure:
● Metadata section
● Specification section
● Typical Pod features like

○ nodeSelector
○ affinity

● Status section

Behind the scene a Pod is created, scheduled  and we 
make sure that the VM starts correctly inside.

The VirtualMachine Object
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apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  creationTimestamp: null
  labels:

kubevirt.io: ""
  name: virtualmachines.kubevirt.io
spec:
  group: kubevirt.io
  names:

kind: VirtualMachine
plural: virtualmachines
shortNames:
- vm
- vms
singular: virtualmachine

  scope: Namespaced
  validation:

CustomResourceDefinition Extend 
the Kubernetes API:

● create a new 
CustomResourceDefinition (CRD), the 
Kubernetes API Server reacts by 
creating a new RESTful resource path

● After the CustomResourceDefinition 
object has been created, you can 
create custom objects. Custom objects 
can contain custom fields

CustomResourceDefinition:vm-resource.yaml
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kind: VirtualMachine
metadata:
  name: testvm
spec:
  domain:
    devices:
      graphics:
      - type: spice
      consoles:
      - type: pty

      

Typical Pod commands:
● kubectl create -f mypodspec.yaml
● kubectl delete mypod
● kubectl exec mypod -it /bin/bash

Typical Virtual Machine commands:
● kubectl create -f myvmspec.yaml 
● kubectl delete testvm
● kubectl plugin virt console testvm
● kubectl plugin virt spice testvm

The Typical Kubectl Feeling
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Architecture
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Kubevirt Architecture Internal
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Components(1/5)

virt-controller:

● This controller is responsible for monitoring the VM (CRDs) and 
managing the associated pods. Currently the controller will make 
sure to create and manage the life-cycle of the pods associated 
to the VM objects.

● A VM object will always be associated to a pod during it's 
life-time, however, due to i.e. migration of a VM the pod instance 
might change over time.
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Components(2/5)

VM (CRD):

● Machine type
● CPU type
● Amount of RAM and vCPUs
● Number and type of NICs
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Components(3/5)

virt-launcher:

● For every VM object one pod is created. This pod's primary container 
runs the virt-launcher KubeVirt component.

● Virt launcher  will take care to launch a VM process for every pod which 
is associated to a VM object whenever it is getting scheduled on a host.

● The main purpose of the virt-launcher Pod is to provide the cgroups and 
namespaces, which will be used to host the VM process.

● Virt-handler signals virt-launcher to start a VM by passing the VM's CRD 
object to virt-launcher. virt-launcher then uses a local libvirtd instance 
within its container to start the VM. From there virt-launcher monitors the 
VM process and terminates once the VM has exited.
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Components(4/5)

LC3

virt-handler:

● Every host needs a single instance of virt-handler. It can be 
delivered as a DaemonSet.

● Virt-handler is also reactive and is watching for changes of the VM 
object, once detected it will perform all necessary operations to 
change a VM to meet the required state.

● Report domain state and spec changes to the cluster.

# LC3



INSERT DESIGNATOR, IF NEEDED

Components(5/5)
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libvirtd:
● An instance of libvirtd is present in every VM pod. virt-launcher 

uses libvirtd to manage the life-cycle of the VM process..
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DEMO
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https://asciinema.org/a/0ljE1L2cw1tiIZuZLsiYsvwEP
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Deep dive into it
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Workflow: Create and Delete a VM
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Sequences 
● A client posts a new VM definition to the K8s API Server.
● The K8s API Server validates the input and creates a VM custom resource definition 

(CRD) object.
● The virt-controller observes the creation of the new VM object and creates a 

corresponding pod.
● Kubernetes is scheduling the pod on a host.
● The virt-controller observes that a pod for the VM got started and updates the 

nodeName field in VM object. After  the nodeName is set, the responsibility 
transitions to the virt-handler for any further action.

● The virt-handler observes that a VM got assigned to host where it is running on.
● The virt-handler is using the VM Specification and signals the creation of the 

corresponding domain using a libvirtd instance in the VM's pod.
● A client deletes the VM object through the virt-api-server.
● The virt-handler observes the deletion and turns off the domain.
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Leveraging K8s Functionality: network, storage 
and computing
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Computing 

● Cores specify vcpu in VM
● Memory specify required 

memory

apiVersion: kubevirt.io/v1alpha1
kind: VirtualMachine
metadata:
  creationTimestamp: null
  name: vm-windows
spec:
  domain:
          ….

cpu:
  cores: 2

resources:
  requests:
    memory: 64M
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Networking 

https://github.com/kubevirt/kubevirt/blob/master/docs/libvirt-pod-networking.md

LC3

func SetupDefaultPodNetwork(domain 
*api.Domain) error {
      ...
  reparePodNetworkInterfaces(vif, 
podNicLink);
  // Start DHCP Server
     ...
  go Handler.StartDHCP(vif, 
fakeServerAddr)
    ...
 }

● SetupDefaultPodNetwork will 
prepare the pod management 
network to be used by a virtual 
machine

●  Virtual machine will own the 
pod network IP and MAC. 

● Pods MAC address will be 
changed to a random address 
and IP will be deleted. 

● DHCP server will be started 
and bounded to the macvlan 
interface to server the original 
pod ip to the guest OS
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Disk
● Virtual Machines are able 

to have disks attached. 
They are not always 
required, but have some 
value if you need to 
persist data.

● Kubernetes provides 
persistent storage through 
Persistent Volumes and 
Claims

apiVersion: kubevirt.io/v1alpha1
kind: VirtualMachine
   ...
  domain:
 ...

devices:
  disks:
  - disk:
      bus: virtio
    name: pvcdisk
    volumeName: pvcvolume

...
  volumes:
  - name: pvcvolume

persistentVolumeClaim:
  claimName: disk-vpc
  ...
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Call for KubeVirt participants

● GitHub:
○ https://github.com/kubevirt/kubevirt
○ https://lc32018.sched.com/event/ERAW/convergence-of-vir

tual-machines-and-containers-orchestration-using-kubevirt-
chunfu-wen-red-hat?iframe=yes&w=100%&sidebar=yes&bg
=no#

● Mailing List:
○ https://groups.google.com/forum/#!forum/kubevirt-dev

● IRC:
○ #kubevirt on irc.freenode.net
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Chunfu Wen-温春福
chwen@redhat.com


