
Not one size fits all, how to size 
Kubernetes clusters
Sahdev Zala / Guang Ya Liu

@sp_zala / @gyliu513
spzala@us.ibm.com / liugya@cn.ibm.com



Outline

• Some basics 
– Containers, Kubernetes

• Kubernetes cluster
– What is it? 
– Design and sizing consideration
– Optimization techniques

• Large scale enterprise cluster
– How we created a 1000 node cluster
– Lessons learned



Overview of Containers

• Abstraction at the app layer 
that packages code and 
dependencies together 

• Multiple containers can run on 
the same machine and share 
the OS kernel with other 
containers, each running as 
isolated processes in user 
space



What is Kubernetes?

• Enterprise level container orchestration
• Provision, manage, scale applications (containers) 

across a cluster
• Manage infrastructure resources needed by 

applications
• Compute
• Volumes
• Networks
• And many many many more...

• Declarative model
• Provide the "desired state" and Kubernetes will make it happen

• What's in a name?
• Kubernetes (K8s/Kube): "Helmsman" in ancient Greek



Kubernetes Community Overview

• Cloud Native Computing 
Foundation project

• Github Repositories 
• github.com/kubernetes/kubernetes

• github.com/kubernetes/kubernetes/issues
• github.com/kubernetes/kubernetes/pulls

• github.com/kubernetes/website
• github.com/kubernetes/community

• Special Interest Groups 
(SIGs)

• Slack channels
– https://kubernetes.slack.com

• Mailing lists 



K8s – API vs Compute Resources

• Pod
• ReplicaSet
• Deployment
• Service
• ConfigMap
• Secrets
• Jobs
• …But how about your cluster and 

compute resources?
– Node, CPU, Memory 



Kubernetes Cluster

• A running Kubernetes 
cluster contains a cluster 
control plane (AKAmaster) 
and worker node(s), with 
cluster state backed by a 
distributed storage 
system(etcd). Cluster can be 
a single node to several 
nodes

• Kubernetes can run on 
various platforms – Laptop, 
VMs, Rack of bare metal 
servers. The effort required 
to set up a cluster varies 
from running a single 
command to crafting your 
own customized cluster



Kubernetes Cluster choices

• Local-machine Solutions
– Minikube, DIND, Ubuntu on LXD
– IBM Cloud Private Community Edition (CE) -

https://hub.docker.com/r/ibmcom/cfc-installer/
– Running Kubernetes locally has obvious development 

advantages, such as lower cost and faster iteration than 
constantly deploying and tearing down clusters on a public 
cloud.

• Cloud Provider Solutions
– AKS, EKS, GKE, IKS..

• Hosted/Managed cluster
• On-Premises Solutions

– Allow you to create Kubernetes clusters on your internal, 
secure, cloud network with only a few commands

• IBM Cloud Private, Kubermatics.. 
• Turnkey Solution, Custom Cluster Etc.



Factors Impacting Cluster Size

• Single node to several nodes - what’s the right size for me? 
• What you want to do with it?

– Just kick off the tires – i.e. learn/play/development
– Production level cluster
– Managed by a cloud provider or you want to manage?  

• What do you want to run on it?
– One or few or many applications
– Kind of applications

• Big Data/Artificial Intelligence (AI) application
• CPU vs Memory intensive
• Stateless or Stateful

– Scale vs Performance
– Networking need
– Monitoring, logging need

• What kind of traffic do you expect?
– Steady heavy traffic
– Burst traffic

• What is your your budget?
– Hardware/Virtualization infrastructure set up

• Etc. 



Scale vs Performance

• After reaching a recommended threshold, 
scale and performances are inversely 
proportional

– Kubernetes has defined two service level objectives
• Return 99% of all API calls in < 1sec
• Start 99% of pods within < 5 sec

– According to study, clusters with more than 5,000 nodes 
may not be able to achieve these service level objectives

– Per what we learned, a single cluster with maximum 
2500 nodes is good enough 

• Anything above, go for multi-cluster approach. This 
is not very stable yet but it’s a WIP. Learn more 
here, https://github.com/kubernetes-sigs/federation-
v2



Networking Need
• NodePort, LoadBalancer, or Ingress services?

– e.g. a Minikube cluster is not ideal if you want to expose your app 
with a LoadBalancer or Ingress services

• Also, what you using for networking – e.g. Calico, Flannel? 



Single or Multiple Master Nodes
• A big cluster with single master may not be enough

– You may need multiple master nodes and want to divide the load of 
master to multiple servers. 

• In our case, 
– We had 3 master nodes
– Added management node for Monitoring, Logging
– Multiple Proxy nodes



Requests and Limits

• Helps manage compute 
resources for containers

– Specify how much CPU and 
memory (RAM) each Container 
needs by using requests and 
limits

• Requests determines 
minimum cpu/memory 
required by container

• Limits set the max 
cpu/memory allowed

• Improve scheduler efficiency
– Allows Kubernetes to increases 

utilization, while at the same 
time maintaining resource 
guarantees for the containers 
that need guarantees

250	
millicore/		
millicpu	

64	MiB



Node Selectors

• Provides control on how to 
assign a pod to nodes

• Simplest form of 
constrains

• Constrain a pod to run 
on a specific nodes

• Useful in certain 
circumstances

– Ensure that a pod ends up 
on a machine with an SSD 
attached to it

Node	label



Node Affinity / Anti Affinity

• The node affinity expands the 
types of constraints in compare to 
Node Selector

– Allows you to constrain which 
nodes your pod is eligible to be 
scheduled on, based on labels on 
the node

– Two types
• Hard –

requiredDuringSchedulingIgnored
DuringExecution

– must be met for a pod to 
be scheduled onto a nod

• Soft –
preferredDuringSchedulingIgnored
DuringExecution

– scheduler will try to 
enforce but will not 
guarantee



Inter-pod Affinity / Anti Affinity

• Allow you to constrain which 
nodes your pod is eligible to be 
scheduled based on labels on 
pods that are already running on 
the node rather than based on 
labels on nodes

• Inter-pod affinity and anti-affinity 
require substantial amount of 
processing which can slow down 
scheduling in large clusters 
significantly. We do not 
recommend using them in 
clusters larger than several 
hundred nodes



Taints and Tolerations

• Taints are the opposite 
to the Node Affinity. 
They are key-value 
pairs associated with 
an effect

• Together they ensure 
that pods are not 
scheduled onto 
inappropriate nodes

• Provides a flexible way 
to steer pods away from 
certain nodes

Corresponding	pod

Adding	taint	to	a	node



Kubernetes Based IBM Cloud Private

• Kubernetes is not enough
• An enterprise Kubernetes 

distribution should also include 
some other core services for 
logging, monitoring etc

• Learn more about IBM Cloud Private at here 
https://www-
03.ibm.com/support/knowledgecenter/SSBS
6K_2.1.0.3/kc_welcome_containers.html



Deployment Topology

• Best Deployment
– Master
– Management
– Worker
– Proxy
– Dynamic host group



500 Nodes Deployment Arch
• IBM Cloud Private 2.1.0.2 which was released in 2018.3
• Calico V2 with Node to Node Mesh
• Sharing one etcd cluster between Kubernetes and Calicos



Network Impact for 500+ Nodes
• Kubernetes claim support 5000 nodes, why IBM Cloud Private cannot in 2.1.0.2?

– IBM Cloud Private using calico as default network
– IBM Cloud Private Calico using node-to-node mesh to configure peering between all calico nodes.
– etcd load is very high when deploying 1000 node cluster, most load is from calico
– Node-to-node mesh stops working if there are more than 700 nodes in the cluster.
– Mesh number would be 1000! in a 1000 node cluster which is not acceptable!

https://docs.projectcalico.org/v2.6/getting-
started/kubernetes/installation/integration#requirements
http://fuel-ccp.readthedocs.io/en/latest/design/k8s_1000_nodes_architecture.html
https://coreos.com/etcd/docs/latest/tuning.html



ETCD Benchmark Test

• ETCD Benchmark Comparison
– Calico V2 with ETCD V2 API
– Calico V3 with ETCD V3 API

• Conclusion
– Migrate to Calico V3 and use 

ETCD V3 API for IBM Cloud 
Private

https://coreos.com/etcd/docs/latest/op-guide/v2-migration.html



1000+ Nodes Deployment Arch
• IBM Cloud Private 2.1.0.3 which was released in 2018.5
• Calico V3 with Router Reflector
• ETCD V3



Deployment Topology Changes

etcd

Kubernetes Calico 2.6 with Node Node Mesh

etcd1

Kubernetes Calico v3.0.4 with Router Reflector

Etcd2(Optional) Router Reflector

IBM	Cloud	Private	2.1.0.2	(k8s	1.9)

IBM	Cloud	Private	2.1.0.3	(k8s	1.10)



Summary

• Sizing Kubernetes cluster can be 
challenging specially for large scale 
cluster

• Be benefitted from the experience of 
others 

– Do good research on what others recommend. Learn 
from already proven approaches. 

• Understand scheduler optimization 
techniques in Kubernetes

• Etcd storage with SSD for better 
performance



Thank You!!

THANK	YOU!!




