
How to port a new arch(nds32) to
Linux mainline

Greentime Hu (胡英漢)

greentime@kernel.org

green.hu@gmail.com

greentime@andestech.com

mailto:greentime@kernel.org
mailto:green.hu@gmail.com
mailto:greentime@andestech.com

Outline

• Introductions
– About me
– What is nds32(Andes)
– Stories of nds32 Linux

• Porting Linux to a new processor
– Prerequisite to port an arch to Linux mainline
– What should you port for your arch

• How to upstream your patchset
– Development cycle
– Ready to mainline
– Send the pull request to Linus

• Reflections and Implications
– Thanks

• Q and A

Introductions

About me

• Manager, Andes Technology Corporation
(2008-2012, 2013-present)
– Linux kernel, RTOS, Arduino

• Engineer, MediaTek (2012-2013)
– Linux kernel

• National Cheng Kung University (2005-2007)
– Institute of Computer and Communication Engineering

– 成功大學電腦與通信工程研究所

• National Chengchi University (2001-2005)
– Department of Computer Science

– 政治大學資訊科學系

What is nds32(Andes)

• Patented powerful 16/32-bit AndeStar™ RISC-like
architecture

• 10 active AndesCore™: 2-8 stage pipeline, 1- and 2-
issue

• Highly performance
– Coremark: 5.41/MHz
– DMIPS: 3.36/MHz

• Smaller code size
– Code size of EEMBC automotive benchmark is 30% better than

ARMv7m gcc

• Support of upstream mainline
– Linux kernel, gcc, binutil, uboot, uclibc-ng, OpenOCD

• >140 licensees, >2.5B Andes-Embedded SoCs
• Taiwan Stock Exchange:6533

Stories of nds32 Linux

• First version
– 2.4

– 2.6.x

• First Linux support since 2006

• Upstream binutil/gcc since 2014

• Upstream Linux kernel since 20171108

• Verifications
– LTP, glibc testsuites, OpenPOSIX testsuites, busybox

testsuites…

Why upstream your Linux

• Pros
– Upgrade all API automatically

– Get all the new features automatically

– Save resources to sync the new version kernel

– Review code strictly, higher reliability

– Popularize the company

– “If you are not using a stable/longterm kernel, your machine is
insecure” – Greg KH

• Cons
– Spend more time for community, reviewing patchset

– Follow the rules

• I think
– The sooner you do it, the better

Porting Linux to
a new processor

Porting Linux to a new processor

• Porting Linux to a new processor architecture,
part 1: The basics
– https://lwn.net/Articles/654783/

• Porting Linux to a new processor architecture,
part 2: The early code
– https://lwn.net/Articles/656286/

• Porting Linux to a new processor architecture,
part 3: To the finish line
– https://lwn.net/Articles/657939/

https://lwn.net/Articles/654783/
https://lwn.net/Articles/656286/
https://lwn.net/Articles/657939/

Prerequisite to port an arch to Linux
mainline

• Get to know your hardware
– Virtual memory model

– Format of the page table

– Translation mechanism

– VIVT/VIPT/PIPT

– Cache/TLB operations

– ASID/global page

– Page attributes

Prerequisite to port an arch to Linux
mainline

• Get to know your hardware
– How to enable/disable interrupts

– How to switch from privilege mode to user mode and vice-
versa

– How to get the cause of an exception

– How to get the interrupt number

Prerequisite to port an arch to Linux
mainline

• Get to know your hardware
– What is ABI(Application Binary Interface)

• Used for C code and assembly code

• System call

• Ftrace

• Context switch

• Caller/callee saved registers

Prerequisite to port an arch to Linux
mainline

• Get to know the kernel
– Low memory/high memory for 32bit CPU

– Direct mapping/vmalloc regions/virtual memory layout

– Kernel occupies the upper
1GB/1280MB(0xc0000000/0xb0000000)

– kmap()/kmap_atomic() to gain temporary access to
these high-memory pages

• A upstream toolchain
– https://lkml.org/lkml/2018/2/26/77

– “Removing architectures without upstream gcc support”

https://lkml.org/lkml/2018/2/26/77

What should you port for your arch

• arch/nds32
– boot: dts files

– configs: a default configuration file

• One kernel to run everywhere

– include: header files for kernel or user space

– kernel: functions for architecture and kernel

– lib: optimized library

– mm: functions for memory related features

– Kbuild

• Makefile

• vmlinux.lds.S
– #include <asm-generic/vmlinux.lds.h>

• Kconfig/Kconfig.cpu

The header files

• asm/ is part of the kernel interface and is
used internally by the kernel source code.

• uapi/asm/ is part of the user interface and
is meant to be exported to user space

• Use the generic one by Kbuild
– include/asm/Kbuild

• generic-y += atomic.h

• generic-y += barrier.h

• ...

The header files

• Architecture specific
– Cache(cacheflush.h, proc-fns.h, cache_info.h)

– TLB management(tlb.h, tlbflush.h,
mmu_context.h)

– ELF format(elf.h)

– IO operations(io.h, barrier.h)

– Interrupt enable/disabling(irqflags.h, assembler.h)

– Page table management(memory.h, page.h,
pgalloc.h, pgtable.h, fixmap.h)

The header files

• Architecture specific
– Context(mmu_context.h, ptrace.h, processor.h,

thread_info.h, mmu.h)

– User space memory access(uaccess.h)

– SYSCALL(unistd.h, syscalls.h, syscall.h)

– VDSO(vdso_datapage.h, vdso.h,
vdso_timer_info.h)

– ATOMIC(futex.h)

– MISC(nds32.h, swab.h, vdso.h, shmparam.h,
dma-mapping.h, l2_cache.h, linkage.h,
module.h, delay.h)

Boot sequence

• Boot from head.S
– ENTRY(_stext)

• before C code

– Setup a temporary virtual memory

– Setting system registers and clear bss sections

– Set init_task(thread pointer) and stack pointer

– b start_kernel

Boot sequence

• start_kernel()
– setup_arch()

• early_init_devtree(__dtb_start)
• setup_memory() //Setup memblock
• paging_init() //Create page table, allocate zero_page
• parse_early_param() //To get boot_command_line
• unflatten_and_copy_device_tree() //copy and create tree of

device_nodes
• early_trap_init() //copy vector table

– trap_init() //do nothing
– mm_init()

• mem_init() //marks the free areas in the mem_map and tells us how much
memory is free.

– init_IRQ()
• irqchip_init()

– time_init()
• of_clk_init()

– … //init each sub system
– local_irq_enable()
– rest_init()

Create kernel threads

• Spawning kernel threads
– start_kernel()

• rest_init()

– kernel_init: The first kernel thread

» run_init_process(/init)

– kthreadd: To schedule a task to run

» schedule() -> __schedule() ->
context_switch() -> switch_to() ->
__switch_to()

What shall we port for user space

• System call
– To get the syscall number and jump to related syscall functions

– Use sys_call_table[__NR_syscalls]

• include/uapi/asm-generic/unistd.h

• Signal
– Setup/restore signal context

– Implement sigreturn.S syscall by VDSO

• VDSO
– Support sigreturn, gettimeofday, clock_getres,

clock_gettime

– Create a share object for user to use

– Also need to implement in glibc

How to
upstream your
patchset

Developing cycle

• Rebase to the latest kernel codes

• Refine your coding style

• Iterations
– Prepare patchset

• git format-patch -o ./tmp/ --subject-
prefix="PATCH v7" --cover-letter
-n --thread=shallow --
cc="green.hu@gmail.com" 4959d43^..60f23e7

– Send patches

• git send-email --to
greentime@andestech.com --to linux-
kernel@vger.kernel.org --to arnd@arndb.de
--to linux-arch@vger.kernel.org ./tmp

– Refine patches based on maintainers’ comments

mailto:green.hu@gmail.com

Ready to be merged to linux-next

• Ask Stephen to pull your tree to linux-next
– https://lkml.org/lkml/2018/2/21/81

• Apply a kernel.org account
– https://korg.wiki.kernel.org/userdoc/accounts

– https://www.kernel.org/category/faq.html

• Get your gpg key signed by 3 kernel
developers
– https://www.kernel.org/doc/ksmap/

https://lkml.org/lkml/2018/2/21/81
https://www.kernel.org/category/faq.html
https://www.kernel.org/category/faq.html
https://www.kernel.org/doc/ksmap/

Send your pull request

• Signed your tag of your tree
– https://git.kernel.org/pub/scm/linux/kernel/git/greentime

/linux.git/tag/?h=nds32-for-linus-4.17

• Send the pull request to Linus
– [GIT PULL] Andes(nds32) Port for Linux 4.17

• https://lkml.org/lkml/2018/4/3/23

– Create Pull Requests

• https://www.kernel.org/doc/html/latest/maintainer/
pull-requests.html#create-branch

https://git.kernel.org/pub/scm/linux/kernel/git/greentime/linux.git/tag/?h=nds32-for-linus-4.17
https://lkml.org/lkml/2018/4/3/23
https://www.kernel.org/doc/html/latest/maintainer/pull-requests.html#create-branch

Reflections and
Implications

Reflections and Implications

• A very interesting journey

• Win-win for customer, company, myself and
Linux community

Thanks

• My team member
– Vincent Ren-Wei Chen(陳人維)

• My boss
– Wang, Tunghwa(王東華)

• Reviewer
– Arnd Bergmann

References

• [PATCH 00/31] Andes(nds32) Linux Kernel
Port
– https://lkml.org/lkml/2017/11/8/276

– “overall this looks very nice, great work!”

• [PATCH v6 00/36] Andes(nds32) Linux Kernel
Port
– https://lkml.org/lkml/2018/1/18/118

– “it's time to move this to the next step towards inclusion”

https://lkml.org/lkml/2017/11/8/276
https://lkml.org/lkml/2018/1/18/118

Q and A

• How many architectures are supported in the
Linux kernel?

• What are the differences between
upstreaming a architecture and a device
driver?

• When is the best time to send a patch?

• What is the most difficult part of this process?

• When reviewers have different opinions?

• How long is the entire process?

