
Better Live Migration

Xiao Guangrong
<xiaoguangrong@tencent.com>

Agenda

• Background

• Shortcomings and solutions

• Status

Background

• Live migration plays a very important role in industry
• The infrastructure of load balancer

• Error recovery

• Software & hardware upgrade

• Live migration is challengeable in the production
• Memory intensive workload in VM

• The rate that vCPU dirties memory is far more faster than networking

• IO sensitive VM requires extreme low downtime and low latency to handle IO
requests

Background (Cont.)

• QEMU/KVM gains some features to improve live migration
• Compression, XBZRLE, auto-converge, etc.

• However, none of them works perfectly

• We, Tencent cloud, are continually improving live migration on our
productions
• We introduced “fast write protection” on KVM Forum 2017

• In this presentation, we focus on the improvements of existing features in
QEMU/KVM

Shortcomings and solutions

• Compression

• XBZRLE

• Auto-converge

Compression

• Use multithreads to compress the data before put it on the network
to reduce transferred size
• Data should be compressible

• CPU intensive, the system should have enough resources to do compression

• Shortcomings
• User has no way to check if compression works well

• Inefficient multithread model
• Multiple locks

• Too many waits & wakeups

Compression: solutions

• We collect the statistics and show them to user
• Compress-rate, Busy-rate, etc.

• User can adjust the parameters based on these
statistics
• Compress level

• Threads number

• Etc.

info migrate

globals:
store-global-state: on
only-migratable: off

send-configuration: on
send-section-footer: on
….........

Migration status: active
total time: 1019540 milliseconds
expected downtime: 2263 milliseconds

setup: 218 milliseconds
transferred ram: 252419995 kbytes
throughput: 2469.45 mbps

remaining ram: 15611332 kbytes
total ram: 62931784 kbytes
duplicate: 915323 pages

skipped: 0 pages
normal: 59673047 pages
normal bytes: 238692188 kbytes

dirty sync count: 28
page size: 4 kbytes
dirty pages rate: 170551 pages

compression pages: 121309323 pages
compression busy: 60588337
compression busy rate: 0.36

compression reduced size: 484281967178
compression rate: 0.97

Compression: solutions (Cont.)

• We introduced a lockless multithread model

Handler

Thread 1

Handler

Thread N

…...
…...

Submit
request

Handle
result

Need flush or

no free buffer?

Save page

Migration Thread

RR

Compression: solutions (Cont.)

• Performance result
• Host: Xeon(R) Gold 6142 CPU @ 2.60GHz * 64 + 256G; VM: 16
vCPUs and 60G, repeatedly write memory in it

• Use 16 threads to compress and decompress

• CPU usage
Before After

Main
Thread

[De]Compress Threads

Source 96% some use 45%, others are very
low ~6%

Dest. 96% some use 58%, other are very low
~10%

Main
Thread

[De]Compress Threads

Source 60% 60%

Dest. 100% 75%

Compression: solutions (Cont.)

• Migration result

Before: Cannot complete

After
Migration status: completed
total time: 64118 milliseconds
downtime: 29 milliseconds
setup: 223 milliseconds
transferred ram: 13345135 kbytes
throughput: 1705.10 mbps
remaining ram: 0 kbytes
total ram: 62931784 kbytes
duplicate: 574921 pages
skipped: 0 pages
normal: 2570281 pages
normal bytes: 10281124 kbytes
dirty sync count: 9
page size: 4 kbytes
compression pages: 28007024 pages
compression busy: 3145182
compression busy rate: 0.08
compression reduced size: 111829024985
compression rate: 0.97

XBZRLE (Xor Binary Zero Run-Length-Encoding)

• “Instead of sending the changed guest memory page this solution will
send a compressed version of the updates”
• Works only if the data is friendly to XBZRLE

• Need extra memory to save the previous memory pages

• Shortcomings
• User has no way to check if XBZRLE works well

• XBZRLE is a CPU sensitive workload and it slows down the whole process

XBZRLE: solutions

• Collect the statistics and show them to
user
• Data reduced rate

• Use multithreads to do XBZRLE
• Based on lockless multithreads model

info migrate
globals: store-global-state=1, only_migratable=0, send-
…...
…...
Migration status: active
total time: 11825292 milliseconds
expected downtime: 5492062 milliseconds
setup: 244 milliseconds
transferred ram: 543826215 kbytes
throughput: 4.98 mbps
remaining ram: 24306832 kbytes
total ram: 62931784 kbytes
duplicate: 7980101 pages
skipped: 0 pages
normal: 135634947 pages
normal bytes: 542539788 kbytes
dirty sync count: 3381
page size: 4 kbytes
dirty pages rate: 634526 pages
cache size: 34359738368 bytes
xbzrle transferred: 147029 kbytes
xbzrle pages: 1084010 pages
xbzrle cache miss: 127544642
xbzrle cache miss rate: 0.00
xbzrle overflow : 651
xbzrle reduce size : 4301477037
xbzrle reduce rate: 1.00

XBZRLE: solutions (Cont.)

• Performance result
Before (Migration can not complete)
globals: store-global-state=1, only_migratable=0, send-
...
Migration status: active
total time: 11825292 milliseconds
expected downtime: 5492062 milliseconds
setup: 244 milliseconds
transferred ram: 543826215 kbytes
throughput: 4.98 mbps
remaining ram: 24306832 kbytes
total ram: 62931784 kbytes
duplicate: 7980101 pages
skipped: 0 pages
normal: 135634947 pages
normal bytes: 542539788 kbytes
dirty sync count: 3381
page size: 4 kbytes
dirty pages rate: 634526 pages
cache size: 34359738368 bytes
xbzrle transferred: 147029 kbytes
xbzrle pages: 1084010 pages
xbzrle cache miss: 127544642
xbzrle cache miss rate: 0.00
xbzrle overflow : 651
xbzrle reduce size : 4301477037
xbzrle reduce rate: 1.00

After (complete even if use half of
memory than before)
globals: store-global-state=1, only_migratable=0, send-
...
Migration status: completed
total time: 400307 milliseconds
downtime: 79 milliseconds
setup: 214 milliseconds
transferred ram: 128504027 kbytes
throughput: 2629.76 mbps
remaining ram: 0 kbytes
total ram: 62931784 kbytes
duplicate: 7665569 pages
skipped: 0 pages
normal: 32045609 pages
normal bytes: 128182436 kbytes
dirty sync count: 30
page size: 4 kbytes
cache size: 34359738368 bytes
xbzrle transferred: 3802 kbytes
xbzrle pages: 70072728 pages
xbzrle cache miss: 11757676
xbzrle cache miss rate: 0.00
xbzrle overflow : 0
xbzrle reduce size : 287014183873
xbzrle reduce rate: 1.00

Auto-converge

• It dynamically throttles vCPUs to force the VM to dirty less memory

• Continually increase the amount of guest cpu throttling until guest
memory write speed slows enough

• Shortcomings
•It make VM completely unusable if live migration is still unsuccessful

•Big latency to handle IO request, e.g, packet loss, ping test failure, etc.

•So, it can not work for CPU and IO sensitive VMs

Auto-converge: solutions

• Introduce the x-cpu-throttle-max, it specifies min. capability the vCPU
can use

• Throttle vCPUs based on the IO statistics…

Status

• Some optimizations of compression have been merged to QEMU
upstream

• Lockless multithreads model has been reviewing in the community

• Others are ready to be pushed out

Q/A?

Reference

• QEMU source code
• https://git.qemu.org/?p=qemu.git;a=summary

• Compression
• https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/multi-thread-
compression.txt

• XBZRLE
• https://git.qemu.org/?p=qemu.git;a=blob;f=docs/xbzrle.txt

• Auto-coverge
• https://wiki.qemu.org/Features/AutoconvergeLiveMigration

https://git.qemu.org/?p=qemu.git;a=summary
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/multi-thread-compression.txt
https://git.qemu.org/?p=qemu.git;a=blob;f=docs/xbzrle.txt
https://wiki.qemu.org/Features/AutoconvergeLiveMigratio

