Better Live Migration

Xiao Guangrong
<xiaoguangrong@tencent.com>

Agenda

e Background
* Shortcomings and solutions
* Status

Background

* Live migration plays a very important role in industry
* The infrastructure of load balancer
* Error recovery
e Software & hardware upgrade

* Live migration is challengeable in the production
* Memory intensive workload in VM
* The rate that vCPU dirties memory is far more faster than networking

* 10 sensitive VM requires extreme low downtime and low latency to handle 10
requests

Background (Cont.)

« QEMU/KVM gains some features to improve live migration
* Compression, XBZRLE, auto-converge, etc.

* However, none of them works perfectly

* We, Tencent cloud, are continually improving live migration on our
productions
 We introduced “fast write protection” on KVM Forum 2017

* |In this presentation, we focus on the improvements of existing features in
QEMU/KVM

Shortcomings and solutions

* Compression
* XBZRLE
* Auto-converge

Compression

e Use multithreads to compress the data before put it on the network
to reduce transferred size
e Data should be compressible
* CPU intensive, the system should have enough resources to do compression

* Shortcomings
* User has no way to check if compression works well

* |Inefficient multithread model
* Multiple locks
* Too many waits & wakeups

Compression: solutions

 We collect the statistics and show them to user
 Compress-rate, Busy-rate, etc.

* User can adjust the parameters based on these
statistics
 Compress level
* Threads number
* Etc.

info migrate

globals:
store-global-state: on
only-migratable: off
send-configuration: on
send-section-footer: on

Migration status: active

total time: 1019540 milliseconds
expected downtime: 2263 milliseconds
setup: 218 milliseconds

transferred ram: 252419995 kbytes
throughput: 2469.45 mbps

remaining ram: 15611332 kbytes

total ram: 62931784 kbytes
duplicate: 915323 pages

skipped: @ pages

normal: 59673047 pages

normal bytes: 238692188 kbytes

dirty sync count: 28

page size: 4 kbytes

dirty pages rate: 170551 pages
compression pages: 121309323 pages
compression busy: 60588337
compression busy rate: 0.36
compression reduced size: 484281967178
compression rate: 0.97

Compression: solutions (Cont.)

e We introduced a lockless multithread model

Handler

Submit
request

T

Handler

Handle
result

Compression: solutions (Cont.)

* Performance result

e Host: Xeon(R) Gold 6142 CPU @ 2.60GHz * 64 + 256G; VM: 16
vCPUs and 60G, repeatedly write memory 1in it

* Use 16 threads to compress and decompress

* CPU usage
Before After
Main [De]Compress Threads Main [De]Compress Threads
Thread Thread
Source 96% some use 45%, others are very Source 60% 60%
low ~6%

Dest. 96% some use 58%, other are very low Dest. 1ee% 75%

~10%

Compression: solutions (Cont.)

* Migration result

Before: Cannot complete
After

Migration status: completed

total time: 64118 milliseconds
downtime: 29 milliseconds

setup: 223 milliseconds
transferred ram: 13345135 kbytes
throughput: 1705.10 mbps
remaining ram: @ kbytes

total ram: 62931784 kbytes
duplicate: 574921 pages

skipped: @ pages

normal: 2570281 pages

normal bytes: 10281124 kbytes
dirty sync count: 9

page size: 4 kbytes

compression pages: 28007024 pages
compression busy: 3145182
compression busy rate: 0.08
compression reduced size: 111829024985
compression rate: 0.97

XBZRLE (Xor Binary Zero Run-Length-Encoding)

* “Instead of sending the changed guest memory page this solution will
send a compressed version of the updates”
 Works only if the data is friendly to XBZRLE

* Need extra memory to save the previous memory pages

* Shortcomings
e User has no way to check if XBZRLE works well
* XBZRLE is a CPU sensitive workload and it slows down the whole process

XBZRLE: solutions

info migrate
globals: store-global-state=1, only_migratable=0, send-

e Collect the statistics and show themto .

user Migration status: active
total time: 11825292 milliseconds
e Data red uced rate expected downtime: 5492062 milliseconds

setup: 244 milliseconds
transferred ram: 543826215 kbytes

e Use multithreads to do XBZRLE throughput: 4.98 mbps

remaining ram: 24306832 kbytes
* Based on lockless multithreads model total ram: 62931784 kbytes

duplicate: 7980101 pages

skipped: 0 pages

normal: 135634947 pages

normal bytes: 542539788 kbytes

dirty sync count: 3381

pagesize: 4 kbytes

dirty pages rate: 634526 pages

cache size: 34359738368 bytes

xbzrle transferred: 147029 kbytes

xbzrle pages: 1084010 pages

xbzrle cache miss: 127544642

xbzrle cache miss rate: 0.00

xbzrle overflow : 651

xbzrle reduce size: 4301477037

xbzrle reduce rate: 1.00

XBZRLE: solutions (Cont.)

* Performance result

Before (Migration can not complete)
globals: store-global-state=1, only_migratable=0, send-

Migration status: active

total time: 11825292 milliseconds
expected downtime: 5492062 milliseconds
setup: 244 milliseconds
transferred ram:543826215 kbytes
throughput: 4.98 mbps

remaining ram: 24306832 kbytes
total ram: 62931784 kbytes
duplicate: 7980101 pages
skipped: 0 pages

normal: 135634947 pages

normal bytes: 542539788 kbytes
dirty sync count: 3381

pagesize: 4 kbytes

dirty pages rate: 634526 pages
cache size: 34359738368 bytes
xbzrle transferred: 147029 kbytes
xbzrle pages: 1084010 pages
xbzrle cache miss: 127544642
xbzrle cache miss rate: 0.00
xbzrle overflow : 651

xbzrle reduce size: 4301477037
xbzrle reduce rate: 1.00

After (complete even if use half of

memory than before)
globals: store-global-state=1, only_migratable=0, send-

Migration status: completed
total time: 400307 milliseconds
downtime: 79 milliseconds
setup: 214 milliseconds
transferred ram: 128504027 kbytes
throughput:2629.76 mbps
remaining ram: 0 kbytes

total ram: 62931784 kbytes
duplicate: 7665569 pages
skipped: 0 pages

normal: 32045609 pages

normal bytes: 128182436 kbytes
dirty sync count: 30

pagesize: 4 kbytes

cache size: 34359738368 bytes
xbzrle transferred: 3802 kbytes
xbzrle pages: 70072728 pages
xbzrle cache miss: 11757676
xbzrle cache miss rate: 0.00
xbzrle overflow : 0

xbzrle reduce size : 287014183873
xbzrle reduce rate: 1.00

Auto-converge

* It dynamically throttles vCPUs to force the VM to dirty less memory

e Continually increase the amount of guest cpu throttling until guest
memory write speed slows enough

* Shortcomings

It make VM completely unusable if live migration is still unsuccessful
*Big latency to handle 10 request, e.g, packet loss, ping test failure, etc.
*So, it can not work for CPU and 10 sensitive VMs

Auto-converge: solutions

* Introduce the x-cpu-throttle-mayx, it specifies min. capability the vCPU
can use

 Throttle vCPUs based on the 10 statistics...

Status

* Some optimizations of compression have been merged to QEMU
upstream

* Lockless multithreads model has been reviewing in the community
e Others are ready to be pushed out

Q/A?

Reference

e QEMU source code
* https://git.gemu.org/?p=gemu.git:a=summary

* Compression

* https://git.gemu.org/?p=gemu.git:a=blob plain:f=docs/multi-thread-
compression.txt

* XBZRLE
* https://git.gemu.org/?p=gemu.git:a=blob:f=docs/xbzrle.txt

* Auto-coverge
* https://wiki.gemu.org/Features/AutoconvergelLiveMigration

https://git.qemu.org/?p=qemu.git;a=summary
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/multi-thread-compression.txt
https://git.qemu.org/?p=qemu.git;a=blob;f=docs/xbzrle.txt
https://wiki.qemu.org/Features/AutoconvergeLiveMigratio

