

Accelerating VM networking through XDP

Jason Wang
Red Hat

Agenda

● Kernel VS userspace
● Introduction to XDP
● XDP for VM
● Use cases
● Benchmark and TODO
● Q&A

Kernel Networking datapath

Host

Guest

vhost_net

TAP

OVS

NIC

virtio-net drv

TX RX

● TAP
– A driver to transmit to or

receive from userspace
– Backend for vhost_net

● Vhost
– Virtio protocol to co-

operate with guest
driver

● OVS
– Forwarding packets

between interfaces

Userspace Networking datapath

● vhost-user
– For implementing vhost

dataplane in another
userspace process

● OVS-Dpdk
– Userspace OVS
– Datapath were

accelerated through dpdk
● Polling mode driver
● VFIO
● Vhost-user slave

OVS-dpdk

Guest

vhost_pmd

OVS core

NIC pmd

virtio-net drv

TX RX

Because we(kernel) are slow

vhost(kernel) vhost(dpdk)
0

2

4

6

8

10

12

14

16

0.78

14.03

0.83

13.88

Packet Per Second (Mpps)

RX
TX

Why? Difference in datapath

dpdk kernel

Meta-data rte_mbuf, head of
packet

heavyweight, skb,
extra allocation

Memory model memory pool for both
TX and RX

vendor specific (RX),
protocol specific (TX)

DMA statically mapped dynamically mapped

Batching (forwarding) aggressive almost no

Busy polling Polling Mode Driver NAPI (polling + event)

VM datapath in host vhost pmd TAP + vhost_net

vhost bulking, prefetching,
busy polling

no bulking, no
prefetching, event
based (or limited busy
polling)

Question:

A fast and lightweight data path for kernel?

Answer:

XDP = eBPF + early packet processing

eBPF

● Generic, efficient, secure in-kernel (Linux) virtual
machine. Programs are injected and attached in the
kernel, event-based.

● extend BPF
– Evolution from classical BPF, assembly-like, interpreter
– Effective: more registers and instructions, larger stack
– Read or write access to context (packets for net)
– LLVM backend
– safety: in kernel verifier
– JIT(Just in time)
– Bpf() syscall for managing program

eBPF features

● Maps: key-value entries (hash, array, …) shared
between eBPF program and with the user space

● Tail calls: “long jump” form one program into
another, context is preserved

● Helpers: for each type of eBPF program, a set of
white-list of kernel functions that could be called:
– Get time
– Debug information printing
– Lookup or update maps
– Shrink or grow packets
– XDP is a type of eBPF program

A fast path in kenrel stack - XDP

● Short for eXpressed Data Path (4.8+)
● Allow run eBPF program at lowest point in the software stack
● Use cases:

– Early dropping - DDOS
– Load balancing
– Monitoring
– Fast forwarding (networking device, CPU, userspace - AF_XDP)

● Designed for
– High performance, fast path in the kernel stack

● Multiqueue for lockess TX, Simple memory layout, NAPI loop, Batching

– Programmability, new function without modifications for kernel
– Not a kernel bypass, work with kernel networking stack
– No need for specialized stack

XDP context

● Simple
– Driver need prepare the XDP context and call XDP program
– Allocated on the stack usually, no pressure for the memory allocator
– Stored at the head of a packet
– Packet address, metadata, and receive queue information
– Linear, no frag, frag_list,

struct xdp_buff {

 void *data;

 void *data_end;

 void *data_meta;

 void *data_hard_start;

 struct xdp_rxq_info *rxq;

};

●

XDP Actions

● Driver behave depends
on XDP program return
value
– XDP_DROP: drop packet

immediately
– XDP_TX: transmit the

packet back to the interface
– XDP_PASS: build skb and

pass the packet to network
stack

– XDP_REDIRECT: redirect
packets

● Bulking in forwarding path

DRV

eth0

Networking
Stack

eth1

DRV

XDP
Program

XDP_PASSXDP_PASS

XDP_REDIRECT

XDP_DROP XDP_TX

XDP program

XDP = eBPF program run inside
driver

foo_kern.c

foo_kern.bpf

LLVM/clang

foo_kern.bpf

bytecode

eBPF Verifier/JIT

machine code

Maps

NIC Ring

Networking
Stack

foo_user.c

bpf() syscall

Read/Write Maps
netlink
Set XDP

userspace
kernel

NIC Driver

skb

1 2

3

4 5

XDP support

● eBPF
– Interpreter, JIT, Verifier, helpers

● Networking device driver support
– Native mode, driver can work on XDP buff

● Native XDP support before building skb
● Simple memory model (e.g one page per packet)
● ndos for redirection, can transmit XDP buffs, bulking
● Best performance

● Networking core support
– Attach XDP program to a network device
– XDP generic

● skb level
● Prototype developing
● Deal with e.g SG or GSO packets

Accelerating method I:
accelerate guest networking

NIC

Virtio-net

Kernel/
userspace
datapath

Host

Guest● XDP support in virtio-
net (4.10)

● Works for
– Kernel datapath on host
– Userspace datapath on

host

● Usecase:
– Typical usage for XDP:

● DDOS, LB, AF_XDP, ...

– Developing XDP features
– Accelerate nested VM

(+vhost_net)

XDP prog

ctl program

Accelerating method II:
Accelerate host VM datapath

eth0

NIC

tap0

XDP
Program

vhost_net

Guest redirect prog

DEVMAP
{0:tap0}

● XDP support in TAP
(4.14)

● A userspace prog
– setup DEVMAP, record the

destination interface
(batching through flush)

– bpf_redirect() for destination
interface

– return XDP_REDIRECT

● Usecases:
– Host networking stack

bypassing

– VM2VM communication

XDP_REDIRECT

userspace
kernel

XDP
Program

DEVMAP
{0:eth0}

XDP accelerated Receive filter
(WIP)

eth0

NIC

tap0

XDP
Program

vhost_net

Guest qemu

Mac table

● Qemu/Libvirt
– intercept receive filter request

guest through control vq
– Setup maps for vlan/mac table
– Attach XDP program to

physical interface
● XDP program

– query vlan/mac table for each
packet

– drop packets early if not
permitted

– otherwise redirect them to
tap0

XDP_REDIRECT

userspace
kernel

vlan table

XDP_DROP

XDP accelerated switch (WIP)

● switchd
– build forwarding table through

eBPF maps
– attach XDP to each interfaces

● XDP program
– Mac table via map
– for packets with destination in

the table, redirect it directly
through XDP (fast path)

– for packets with unknown
destination, return XDP_PASS
and pass it back to normal
kernel path for switchd to
process (slow path)

eth0

NIC

tap0

XDP
Program

vhost_net

Guest1 switchd

XDP_PASS

switch

Guest2

tap1

vhost_net

XDP_REDIRECT XDP_REDIRECT

XDP
Program

XDP
Program

XDP_PASS XDP_PASS

userspace
kernel

Acceleration Method III:
XDP offload to host (WIP)

● Offload XDP to host
– Almost “self-contained”
– Lower and faster

● Datapath run inside host
● No virt overhead

– With XDP offload framework
– Dedicated verifier

● Classification:
– Good: Filtering, dropping, XDP_TX
– BAD: XDP_REDIRECT, debug print
– Hard to support all from startup

● Run inside guest if it can’t be
offloaded

– Verified again in host, JIT in host
– MAPs in host, way to access it

from guest userspace

NIC

Tap0

vhost_net

Guest

Qemu

userspace
kernel

XDP kern
Program

 Offload XDP
Program

XDP user
Program

virtio
verifier cvq

PASS

JIT

verifier

verifier
NO

maps

How XDP help for VM datapath

dpdk Kernel + XDP

Meta-data rte_mbuf, head of
packet

lightweight, XDP_buff,
head of packet

Memory model memory pool for both
TX and RX

vendor specific or
generic XDP page
pool, frame return API

DMA statically mapped dynamically mapped

Batching (forwarding) aggressive batching via devmap
(XDP_REDIRECT)

Busy polling Polling Mode Driver NAPI (polling + event)

VM datapath in host vhost pmd TAP + vhost_net,
vhost_net can see
XDP buff directly (RX)

vhost bulking, prefetching,
busy polling

Batch dequeuing XDP
buffs from TAP, no
prefetching, event based
(or limited busy polling)

Here we are

macvtap XDP_REDIRECT dpdk testpmd
0

2

4

6

8

10

12

14

16

0.88

4.03

14.33

0.93

4.14

13.94

Packet Per Second (Mpps)

RX
TX

Future work

● WIP
– XDP accelerated vswitch
– Virtio-net XDP offload

● Performance optimization
– Send and receive XDP_buff to vhost_net directly
– Better bulking in TAP/vhost_net

● (XDP_REDIRECT can give +10Mpps on host between physical ports)

– Better inter driver co-operation (inter driver page recycling)
– AF_XDP instead of TAP?

● More driver support for XDP/XDP_REDIRECT
– supported by i40e, ixgbe, tuntap, virtio-net, mlx5(partial)
– please add XDP_REDIRECT support for your driver! (VF as well)

Summary

● Performance of kernel datapath for
VM is improve(ing)!
– XDP

● Fast kernel datapath
● Userspace defined policy

– More coming soon

● Patches are welcomed!

Q&A

Thanks!

APPENDIX samples/bpf/xdp*

xdp1 Early packet dropping(XDP_DROP)

xdp2 Rewrite(macswap) + forwarding(XDP_TX)

xdp_tx_iptunnel Tunneling(header adjustment) + forwarding(XDP_TX)

xdp_redirect Simple redirection (XDP_REDIRECT)

xdp_redirect_map Batching (DEVMAP) + redirection (XDP_REDIRECT)

xdp_fwd_kern ipv4+ipv6 forwarding (XDP_REDIRECT)

...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

