
A Novel Flow Network Graph Based
Scheduling Approach in Kubernetes

@kevin-wangzefeng
wangzefeng@huawei.com

Agenda

• Scheduling in K8S
• The Default Scheduler
• Firmament & Poseidon
• Future plans

Scheduling in Kubernetes
apiVersion: v1

kind: Pod

metadata:

 labels:

 run: my-pod

 name: my-pod-76559f5d5b-l9b9p

 namespace: default

......

spec:

 dnsPolicy: ClusterFirst

 nodeName: node1

 restartPolicy: Always

 schedulerName: default-scheduler

 containers:

......

The default scheduler

• Queue based
– one pod one time
– best fit (scheduling time)

• Resource allocation model
– Request based, not real-time

usage
– Low utilization (due to uncertain

user resource estimation)

• Policies implemented as two
sets of algorithms:

– Predicates
– Priorities

What is Firmament

• Flow based scheduler
– Models workloads and cluster as a flow network (DAG)
– Policies considered at DAG build / update
– Run Min-Cost Max-Flow (MCMF) solver to find an optimal flow
– Scheduling results extracted from the optimal flow

diff Firmament Kube-scheduler

• Similar to default scheduler
– “Global optimal solution”
– Pluggable scheduling policies

• That makes differences
– Flexible resource modeling, easy to extend to support topology (zones, racks,

NUMA, etc.)
– Built-in support with rescheduling, priority and preemption
– And a set of other cost models:

• network-ware, Quincy, load-spreading etc.
– Low decision latency at scale

• sub-second decisions at 10k+ machines
– batching approach
– By default use resource utilization instead of reservation

Flow network example in Firmament

• Flow network
- 4 machine cluster, 2 jobs (3 tasks and 2

tasks).

• Arc labels show non-zero costs
- (values depends on policies.)

• All arcs have unit capacity
- except those between unscheduled

aggregators and the sink.

• The red arcs carry flow and form the
min-cost solution.

- All tasks except T0,1 are scheduled on
machines.

And Poseidon?

To fill the gaps between K8S and
Firmament
• Different concepts

– K8S: workloads, pods
– Firmament: jobs, tasks

• Different language
– K8S: Golang
– Firmament: C++

• Resource Requests v.s. Real-
time utilization

– K8S: allocate by requests and “un-
claimed”

– Firmament: utilization statistics

Poseidon sink

HeapsterKubernetes

API server

Firmament  
gRPC service

Poseidon

Utilization stats
gRPC service

utili
zatio

n statsN
ode/pod

 
events

Pod 
bindings

U
tilization

 
stats

Scheduling 
decisions

N
ode/task

 
events

Poseidon Design

Pod worker pool

N
od

e
ev

en
ts

Ta
sk

ev

en
ts

Po
d

ev
en

ts

N
od

e
ev

en
ts

Po
se

id
on Node watcher

Scheduler loop

Pod watcher

Kubernetes API server

Firmament gRPC
service

Utilization
statistics gRPC

service

Po
d

bi
nd

in
gs

Heapster

U
til

iz
at

io
n

st
at

s

Sc
he

du
le

ta

sk
s

Sc
he

du
lin

g
de

ci
si

on
s

U
til

iz
at

io
n

st
at

s

Node worker pool

Node keyed
queue

Pod keyed 
queue

Flow Network aligned to Kubernetes Concept

N0

N1

R0

N2

N3

R1

SP2
C

U

P0

P1

P3

P4

Node Affinity
2

3

5

720

15

9

5

Node Affin
ity

Status and Progress

• Incubating under K8S scheduler SIG
– https://github.com/kubernetes-sigs/poseidon

– Currently Alpha (v0.3)

– Support CPU/Memory Cost model

– Node Affinity/Anti-Affinity

– Pod Affinity/Anti-Affinity

– Automation for E2E tests, PR process etc.

– and more…

https://github.com/kubernetes-sigs/poseidon
https://github.com/kubernetes-sigs/poseidon

30X algorithmic throughput

No Nodes Pods Poseidon Default Scheduler

1 200 3800 26027 761

2 400 7600 15200 361

3 600 11400 12351 265

Future plans

• Under development
– Max allowed pods for nodes.

– Taints & Tolerations.

– Another round of benchmarking for scalabilities, performances.

• Longer future:
– Transitioning to Metrics server API (Heapster is going to be deprecated).

– High Availability / Failover for in-memory Firmament/Poseidon processes.
– Priority Pre-emption support.
– Gang Scheduling.
– Resource Utilization benchmark.

– Better cooperating with the default scheduler. (enhancements on multi-scheduler
framework)

– Checkout https://github.com/kubernetes-sigs/poseidon/issues for more…

https://github.com/kubernetes-sigs/poseidon/issues

Join us!

• Scheduling SIG
– https://groups.google.com/forum/#!forum/kubernetes-sig-

scheduling

• Poseidon Project
– https://github.com/kubernetes-sigs/poseidon

• Follow Huawei Container team  
on WeChat

https://groups.google.com/forum/#!forum/kubernetes-sig-scheduling
https://groups.google.com/forum/#!forum/kubernetes-sig-scheduling
https://groups.google.com/forum/#!forum/kubernetes-sig-scheduling
https://github.com/kubernetes-sigs/poseidon
https://github.com/kubernetes-sigs/poseidon

Thank you!

